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Abstract

This work develops an adaptive concurrent multi-level computational model for multi-scale analysis of

composite structures undergoing damage initiation and growth due to microstructural damage induced by

debonding at the fiber-matrix interface. The model combines macroscopic computations using a continuum

damage model developed in a preceding paper [84] with explicit micromechanical computations of stresses

and strain, including explicit debonding at the fiber-matrix interface. The macroscopic computations are

done by conventional FEM models while the Voronoi cell FEM is used for micromechanical analysis. Three

hierarchical levels of different resolution adaptively evolve in this to improve the accuracy of solutions by

reducing modeling and discretization errors. They levels include: (a) level-O of pure macroscopic analy-

sis using a continuum damage mechanics (CDM) model; (b) level-i of asymptotic homogenization based

macroscopic-microscopic RVE modeling to monitor the breakdown of continuum laws and signal the need

for microscopic analyses; and (c) level-2 regions of pure micromechanical modeling with explicit depiction of

the local microstructure. Two numerical examples are solved to demonstrate the effectiveness and accuracy

of the multi-scale model. A double lap bonded composite joint is modeled for demonstrating the model's

capability in handling large structural problems.

For micromechanical analysis, the traditional Voronoi cell finite element model(VCFEM) has been im-

proved for studying the interfacial debonding. A new eXtended Voronoi cell finite element model(X-VCFEM)

has been developed for modeling interfacial debonding with arbitrary matrix cohesive cracking in fiber-

reinforced composites. To describe the onset and growth of damage along the fiber-matrix interface, normal

and tangential cohesive zone models are coupled into VCFEM. It is shown that the initiation and espe-

cially propagation of debonding depends not only on the total cohesive energy, but also on the shape of the

traction-displacement curve. The model is also used to study the influence of various local morphological
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11. S. Li and S. Ghosh, Debonding in composite microstructures with morphological variations, Interna-

tional Journal of Computational Methods, Vol. 1, No. 1, pp. 121-149, 2004.

12. S. Ghosh, Computational material Modeling: A current perspective, Computer Modeling in Engineer-

ing. Sciences, Vol.5, No.1, pp. 1-4, 2004.
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15. P. Raghavan and S. Ghosh, Concurrent multi-scale analysis of elastic composites by a multi-level

computational model, Computer Methods in Applied Mechanics and Engineering, Vol. 193, No. 6-8,
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3. S. Ghosh Modeling at the interface of mechanics and materials for composite and polycrystalline
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1. S. Ghosh, Computational multi-scale models for structure-material interaction, AFOSR Workshop on
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2. S. Ghosh, Computational multi-scale models for structure-material interaction, Mechanics of Materials

Workshop, Mathematisches Forschungsinstitut, Oberwolfach, Germany, January, 2006.

4
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tional Congress on Computational Mechanics and Simulation, Indian Institute of Technology, Kanpur,

December 2004.
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2. Advisor of Robert Melosh Medal Finalist, 2006
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1.9 Collaborations with Air Force

We have collaborated with Dr. N.J. Pagano, formerly at the Air Force Laboratories at Wright Patterson

Air Force Base. We have co-authored 3 papers on this research. In addition, I am working with Greg

Schoeppener, Dean Foster and Ajit Roy on future collaborations. I am also working with a group in the

Materials Laboratory lead by Dennis Dimiduk on modeling metallic materials.
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Chapter 2

Introduction

The commercial use of advanced fiber reinforced composites in structural components has considerably

increased due to their superior thermo-mechanical properties. Based on design requirements, they are

engineered to yield high strength or stiffness to weight ratios, resulting in a tremendous advantage over

conventional materials. Despite mechanical property enhancements, the presence of fibers in composites

often has adverse effects on their failure properties. Both debonding at the fiber-matrix interface and crack

in matrix are major micromechanical damage phenomena, responsible for deterring the overall properties

and resulting in diminished structural integrity. The search for a rational design procedure to select optimal

composite microstructures provides a compelling reason for accelerated development of methods relating the

microstructure to the material's mechanical behavior and failure characteristics.

Analysis of composite materials with microstructural heterogeneities is conventionally done with macro-

scopic properties obtained by homogenizing response functions in the representative volume element (RVE)

from microscopic analyses at smaller length scales. While these "bottom-up" homogenization models are

efficient and can reasonably predict macroscopic or averaged behavior, such as stiffness or strength, they

have limited predictive capabilities with problems involving localization, failure or instability. Assumptions

of macroscopic uniformity and RVE periodicity, the two basic requirements of homogenization, break down

under these circumstances. The uniformity assumption ceases to hold in critical regions of high local solution
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gradients, such as near free edges, interfaces, material discontinuities or evolving damage. RVE periodicity,

on the other hand, is unrealistic for non-uniform microstructures, e.g. in the presence of clustering of hetero-

geneities or microscopic damage. Even with a uniform phase distribution in the microstructure, the evolution

of localized stresses, strains or damage path can violate the periodicity conditions. Problems like this have

been effectively tackled by multi-scale modeling methods e.g. in [81, 33, 50, 75, 74, 90, 89, 83, 82, 101, 120, 99].

Multi-scale analyses methods can be broadly classified into two classes. The first is known as "hierarchical

models" [33, 50, 101, 99] in which information is passed from lower to higher scales, usually in the form

of material properties. The hierarchical homogenization models assume periodic representative volume ele-

ments (RVE) in the microstructure and uniformity of macroscopic field variables. The second class, known

as "concurrent methods" [89, 75, 74, 90, 83, 82, 120], implement sub-structuring and simultaneously solve

different models at regions with different resolutions or scales.

The two-way coupling of scales enabled in the concurrent methods is suitable for problems involving

localization, damage and failure. Macroscopic analysis, using bottom-up homogenization in regions of rel-

atively benign deformation, enhances the efficiency of the computational analysis. As a matter of fact, it

would be impossible to analyze large structural regions without the advantage of a continuum model based

macroscopic analysis. On the other hand, the top-down localization process cascading down to the mi-

crostructure in critical regions of localized damage or instability for pure microscopic analysis, is necessary

for accurately predicting the damage path. These microscopic computations, depicting the real microstruc-

ture are often complex and computationally prohibitive. Hence, a concurrent setting makes such analyses

feasible, provided the "zoom-in" regions are kept to a minimum. The adaptive multi-level models, promoted

in [75, 74, 90, 83, 82, 120], are attempts to achieve this objective, with the adaptivity motivated from phys-

ical and mathematical perspectives. However, there is a paucity of such studies in the literature involving

material nonlinearity and evolving microstructural damage. In their previous studies, Ghosh and coworkers

have proposed adaptive multi-level analysis using the microstructural Voronoi cell FEM model for modeling

elastic-plastic composites with particle cracking and porosities in [89], and for elastic composites with free

edges and stress singularities in [83, 82].

In this work, we have derived and computationally modeled an anisotropic continuum damage mechanics
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(CDM) model for unidirectional fiber-reinforced composites undergoing interfacial debonding from by using

homogenization theory. The CDM model homogenizes the damage incurred through initiation and growth

of interfacial debonding in a microstructural RVE with nonuniform distribution of fibers. Additionally,

arbitrary loading conditions are also effectively handled by this model. The CDM model is then used in an

adaptive concurrent multi-level computational model to analyze multi-scale evolution of damage. Damage

by fiber-matrix interface debonding, is explicitly modeled over extended microstructural regions at critical

locations [37, 581. The adaptive model addresses issues of efficiency and accuracy through considerations of

physically-based modeling errors.

The adaptive multi-level model consists of three levels of hierarchy viz. level-C, level-1 and level-2), which

evolve in sequence. The continuum damage model developed in [84] is used for level-O computations. The

level-1 domain is used as a 'swing region' to establish criteria for switching from macroscopic to microscopic

calculations. Physical criteria involving variables at the macroscopic and microstructural RVE levels, trigger

switching from pure macroscopic to pure microscopic calculations, i.e. the level - 0 -- level - 1 -• level - 2.

A transition layer is placed between the level - 1 and microscopic level - 2 domains for smooth transition

from one scale to the next.

All computations in the composite microstructure with explicit representations of the fiber and matrix

phases are done with the Voronoi cell finite element model or VCFEM [37, 58]. Accurate interface debond-

ing analysis is a difficult task due to the fact that morphological and constitutive complexities govern its

initiation and growth. The present study is aimed at understanding the effect of microstructure on interface

decohesion induced damage evolution in multi-fiber microstructures. The effect of debonded interface on the

mechanical properties have been studied by several investigators e.g. [13, 44, 77], using simplified models for

representing imperfect conditions through traction discontinuities. The propagation of interface cracking has

been successfully modeled by a number of researchers using the cohesive volumetric finite element methods.

Among the important contributions to the field of damage evolution by normal and tangential separation

are those by Needleman [71, 72, 73], Tvergaard [105, 104] , Allen et. al. [4, 62], Lissenden et. al. [61],

Geubelle et. al. [35], Walter et. al. [109] among others. Yuan et.al. [115] and Achenbach and Zhu [1] have
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evaluated microscopic and macroscopic responses for imperfect and debonded interfaces using finite element

models. A majority of these studies have used unit cell models with periodic repetition of single cells. These

models provide valuable insights into the microstructural damage processes. However many of these are

ineffective in predicting the interaction between fibers, effects of clustering, alignment, relative sizes etc.,

that are critical to the failure process in the microstructure. Zhong and Knauss [117] have proposed a hybrid

discrete-continuum approach in which discrete particle interactions with damage evolution are modeled, ac-

counting for particle size and spacing.

Another important damage phenomenon in composites is crack propagation in brittle matrix. The dif-

ficulty in obtaining analytical solutions for many of these problems, especially those associated with crack

propagation, has prompted the use of numerical methods like the finite element method for the determina-

tion of fracture mechanics parameters such as stress intensity factors, energy release rates and J-integrals,

crack tip stresses and opening displacements. Analyses using conventional finite element method require

very high density mesh to overcome limitations of severe pathological mesh dependence near the crack tips.

Convergence is very slow since stress singularities are not accounted for in the element formulation. For

improving the computational efficiency through better representation of the crack tip singularity, a number

of different methods have been proposed. The superposition method [113, 112] has introduced the superpo-

sition of singular terms to the finite element interpolations. The singular element method introducing the

quarter-point elements [7, 8, 47, 48] near the crack tip has been developed to yield reasonably accurate crack

tip parameters and displacements. As an alternative to the displacement based finite element models, hybrid

singular elements have been proposed in [103, 102, 60, 78, 53, 116]. Also termed as super-elements, these

elements accommodate crack tip singularity through interpolation functions that account for stress intensity

factors using classical elasticity theory. Furthermore, numerical analysis and simulation of the growth of

multiple cracks in materials is a challenging enterprise due to morphological and constitutive complexities

that govern its growth. Even a very high density mesh cannot overcome pathological mesh dependence

near the crack tips and avoid biasing the direction of crack propagation. The difficulties aggravate in the

presence of multiple cracks, due to their interaction with each other. Various methods have been proposed
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for improving the effectiveness of computational methods in modeling cracks. While most of these analyses

are limited to stationary cracks, it is only recently that effective methods of analysis of crack propagation

are being proposed.

With increasing power of computational modeling and hardware, the cohesive zone models [71, 72, 73,

104, 34, 35, 42, 76] have emerged as important tools for modeling crack propagation in homogeneous and

heterogeneous materials. In these models, interfaces of similar and dissimilar materials are treated as zero

thickness non-linear springs. Interfacial traction is specified as nonlinear functions of tangential and normal

separations across the interface to manifest crack evolution. These models have been used to simulate crack

growth between elements in [16, 110, 42], by lacing the interface between contiguous elements with cohesive

springs. The use of a highly refined computational mesh, especially near the crack tip is still a requirement,

even though the effect is mitigated due to the finite crack tip stress with this model. Alternatively, intra-

element enrichment approaches, based on the incorporation of embedded discontinuities in displacement or

strain fields have been proposed ([52]), which eliminates mesh dependent prediction of the evolving crack

path, and hence the need for remeshing. The extended FEM or X-FEM [10, 9, 11, 12, 28, 66, 67] is a powerful

recent addition to this family of intra-element enrichment. Cohesive crack propagation has been modeled in

this work by using the partition of unity concept to incorporate local enrichment functions that allows the

preservation of the general displacement based FEM formalism.

Stress-based finite element methods have had considerable success when stress fields are of interest in

the analysis [103, 102]. Within this general formalism, the Voronoi cell finite element method (VCFEM)

has been developed in [37, 68, 88, 38, 87, 86, 58] for micromechanical analysis of arbitrary heterogeneous

microstructures. The method can effectively overcome requirements of large degrees of freedom in conven-

tional finite element models. Morphological arbitrariness in dispersions, shapes and sizes of heterogeneities,

as seen in real micrographs are readily modeled by this method. The VCFE model naturally evolves by

tessellation of the microstructure into a network of multi-sided Voronoi polygons. Each Voronoi cell with

embedded heterogeneities (particle, fiber, void, crack etc.) represents the region of contiguity for the hetero-
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geneity, and is treated as an element in VCFEM. VCFEM elements are considerably larger than conventional

FEM elements and incorporate a special assumed stress hybrid FEM formulation. Incorporation of known

functional forms from analytical micromechanics substantially enhances its convergence. A high level of

accuracy with significantly reduced degrees of freedom has been achieved with VCFEM. Computational

efficiency is therefore substantially enhanced compared to conventional displacement-based FE models. Suc-

cessful applications of 2D-small deformation VCFEM have been made in thermo-elastic-plastic problems

of composite and porous materials [68, 881. An adaptive VCFEM has been developed in [88], where opti-

mal improvement is achieved by h-p adaptation of the displacement field and p-enrichment of the stress field.

The cohesive crack propagation model has been incorporated in VCFEM in [37, 58] to model interface

debonding in fiber reinforced composites. However, in these models, the debonding or crack evolution path

is along the interface and hence the cohesive zone regions are known a-priori. In the event that the crack

branches off into the matrix, the path is no longer pre-assessed and needs to be determined at each load

increment, consistent with the local state of stresses, strains and morphology. This task is considerably more

challenging since a slight deviation can lead to completely wrong prediction.

The motivation of this work is derived from the need to create a robust finite element method, eXtended

Voronoi cell finite element model (X-VCFEM), for modeling interface debonding with arbitrary crack prop-

agation in heterogeneous materials. This is an essential step, prior to simulating the entire microstructural

failure problem. X-VCFEM incorporates: (a) stress discontinuities across the cohesive crack through branch

functions in conjunction with level set methods, (b) crack tip stress concentration through the introduction

of multi-resolution wavelet functions [41, 51, 80] in the vicinity of the crack tip, and (c) incremental crack

propagation using a cohesive energy based criterion for estimating the direction and length of the incremental

crack advance.
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2.1 Organization of this Report

The report is divided into five subsequent chapters. In chapter 3, variational formulation and various

aspects of the computational scheme for interface debonding in composites are presented. In this chapter,

the VCFE model is also used to study the influence of various local morphological parameters on damage

evolution by interface debonding and the sensitivity of the debonding process to spatial distribution and

fiber size. Extensions of the VCFEM (X-VCFEM) for cohesive crack propagation are developed in Chapter

4. Numerical validation of X-VCFEM for matrix cracking is also presented. Based on the preparation of

previous two chapters, the X-VCFEM for modeling interface debonding with matrix cohesive cracking are

developed in chapter 5. Finally, an account of multi-scale modeling is presented with critical examples The

report ends with a discussion and conclusion of the overall effort in chapter 7.
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Chapter 3

Voronoi cell Finite Element Method

for Interfacial Debonding in

Composite Microstructures with

Morphological Variations

3.1 Introduction

Debonding at the fiber-matrix interface is a major micromechanical damage phenomenon in composites,

responsible for deterring the overall properties and resulting in diminished structural integrity. The search

for a rational design procedure to select optimal composite microstructures provides a compelling reason

for accelerated development of methods relating the microstructure to the material's mechanical behavior

and failure characteristics. The present study is aimed at understanding the effect of microstructure on

interfacial decohesion induced damage evolution in multi-fiber microstructures. However many of these are

ineffective in predicting the interaction between fibers, effects of clustering, alignment, relative sizes etc.,
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with VCFEM, the inclusion-matrix interface in each element is lined with a series of cohesive zone springs,

for which debonding is a phenomenon of progressive separation across an extended crack tip that is resisted

by cohesive tractions depicted in figure 3.1(b).

3.2.1 Assumed Stress VCFEM Formulation

Each Voronoi cell element is composed of the matrix phase (Qm), the inclusion phase(Q,) and a zero thickness

interface region(lin : volume(Qj,,) -+ 0), such that Q, = 2, U Q, Ui. The element outer boundary

consists of the prescribed displacement boundary (Pum), prescribed traction boundary (Ptm) and the inter-

element boundary (Prm), so i.e. 9Qe = rum U Ftm U Fm. Compatible displacement conditions apply on

aQ,. On the other hand, the inner matrix-inclusion interface (afQn/af2c9 ) in each element is facilitated with

incompatible displacements across it as seen in figure 3.1(b). In order to describe debonding with progressing

deformation through decohesion, the interface is lined with a set of node-pairs with nodes belonging to the

matrix interface (&f2') and inclusion interface (a9cc) respectively. o9 has an outward normal n' (=n'),

while n' is the outward normal to af2e. In the incremental assumed stress hybrid VCFEM formulation

[37, 68, 88], the complementary energy functional for each element is expressed in terms of increments of

stress and displacement fields as:

He(a, Au, u, Au) - L AB(um , Aum )df2 - jo AB(u, Auc)dQ

L E'm : A dQ- J: Aacdfi

+ f (a m + Au m )• ne. (um + Aura)daQ
aone

- J (T + A0(tmu Au")dr

- f (a-m + A,- m ) -n. (um + Au')daQ
anT

+ f (,c + Auc) . nc. (uc + Auc)da&)

- I(U+A /-U'T--Au/)Tnd(u' - uc)dca (3.1)

J 8 Ou"/8 utJ (uV-ic)
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Here B is the complementary energy density and the superscripts m and c correspond to variables associated

with the matrix and inclusion phases. a' and ac are the equilibrated stress fields, cm and Ec the corre-

sponding strain fields in different phases of each Voronoi element. Also, u, ur and uc are the kinematically

admissible displacement fields on aQ,, af and a8cc respectively. The prefix A corresponds to increments.

The last two terms provide the work done by the interfacial tractions T m = Tamn m +T m tn due to interfacial

separation (ur - uc), where T,, and Ttm are the normal and tangential components that are described by

cohesive laws. The total energy for the entire composite domain is obtained by adding the energy functionals

for N elements as
N

H E ZHe (3.2)
C= 1

Independent assumptions on stress increments Acr are made in each of the element phases to accommodate

stress jumps across the interface. A convenient method of deriving equilibrated stress increments in each

phase is through the introduction of stress functions P(x, y), e.g. Airy's stress function in 2D. Important

micromechanics observations, that interfacial stress concentrations depend on the shape of the heterogeneity,

have been incorporated in the choice of stress functions in [37, 88] through the decomposition of the stress

functions into (a) a purely polynomial function 4)m and (b) a reciprocal function 4Ir, (-P1 = 4Pmn +,PM).

The inclusion stress functions are admitted as polynomial function 4oly (()' = -i)coly). The pure polynomial

function Ppoly accommodates the far field stress in the matrix and inclusion and are written as:

111mly = E ýPPA/OPq and "oP = l CPr'qAflp/ q (3.3)
p,q p,q

(7, 1) are scaled local coordinates with origin at the element centroid (xe, Y,), such that

S= (x - xc)/Le, 77 = (y - yc)/Le (3.4)

with the scaling parameter for each element Le = y/max(x - xc) x max(y - y,) V(x, y) C a!e. The use of

the local coordinates (ý, 77) instead of global coordinates (x, y) in the construction of stress functions prevents

ill conditioning of the stiffness matrix incurred through discrepancies due to high exponents of (x, y) in (DIm
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and V. The reciprocal stress function 4 >', facilitates interfacial stress concentration, accounting for its

shape, and decays with increasing distance from the interface.

\pq iA=1 f +p fp!il +A.... (3.5)
re p,q - l p,q

The radial function f(x, y) is a constructed by Schwarz-Christoffel conformal transformation of an elliptical

interface or by a Fourier series transformation for arbitrary shapes such as squares (see [37, 68]), to yield

the properties

1
f(x,1y) = 1 on 3S7Q' and -*0 as (x, y) -- oo (3.6)f(x, y)

Stress increments in the matrix and inclusion phases of the Voronoi cell elements are obtained from the

second derivatives of stress functions with respect to x and y coordinates, resulting in:

Ac4' 1 Aa'~

Au, = [Pm ]{AO3m } and A-Cr = [PCl{A,3C} (3.7)

where [Pm] and [PC] are stress interpolation matrices in the matrix and inclusion. The boundary displace-

ments are generated by interpolation in terms of nodal displacements on a&Q, O9' and aQ2c using linear or

quadratic shape functions.

{Au} = [LI{Aýq} on aQ, , {Au' } = [LCI{Aq' } on aQ' (3.8)

and {Auc} = [LC]{Aqc} on (0c

where {Aq}, {Aqm} and {Aqc} are generalized displacement vectors at the nodes. After substituting stress

and displacement interpolations, the stationary conditions of equations (3.1) and (3.2) with respect to the

stress parameters A/3m and A/3c, and displacement parameters {Aq), {Aqm} and {Aqc} are determined

and solved to yield the stress and displacement solutions in each element. It is essential that the relation

between the interfacial traction components (TM,Ttm) and separation (ur - u') be defined prior to the above
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step. Different cohesive zone models are considered for this purpose.

3.2.2 Cohesive zone models for the interface

Cohesive zone interfacial models [29, 6, 18] are effective in depicting material failure as a separation process

across an extended crack tip. They introduce softening constitutive equations relating crack surface tractions

to the material separation across the crack. The tractions across the interface reach a maximum, subsequently

decrease and eventually vanish with increasing interfacial separation. A wide variety of cohesive zone models

polynomial functions [71, 72, 73], exponential functions [72, 42, 76], bilinear functions [35], and others

have been proposed in literature. Motivated by inter-atomic potentials in atomistic modeling, many of

these cohesive laws use a potential function 4 to describe the traction-displacement relation during material

separation. A comprehensive discussion of these models is presented in [18]. Some of these rate-independent

cohesive zone models are incorporated in VCFEM to simulate the initiation and propagation of interfacial

debonding.

Polynomial models

Polynomial forms of the potential functions have been proposed in [71, 72, 73] and expressed as

(U ) 27_. . 1 In 21_ 4 Un +1 u 2
= 4 2 +* 3+ 2 J6

1 (!t)2 [1 - 2( )1 + (_)21}Vu' < 6% (3.9)

where un and It are the normal and tangential components of displacement jump across the interface. In

this model, the cohesive law parameters to be determined from experiments are O'maa the maximum normal

traction in normal loading, 3*, and a is the ratio of interface shear to normal stiffness at the interface. The

normal and tangential components of the traction at the interface are obtained by taking the derivatives of

¢(un, ut) with respect to normal and tangential displacement components as
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ca o 27 u n U n) ( u n 2] + C, * ,1I 2[( u ,n

80. 27 4 ) 2( J2

Tt - o 27 - 4max{a(-)[1 - 2( -) +'5" J (3.10)

The maximum value of T, is reached at 5c = 6*/3. The traction components T, and Tt go to zero for

un > P*. Furthermore, the normal displacement component is required constrained to the inequality un > 0

to avoid penetration between the fiber and matrix phases at the interface.

Exponential Model

Cohesive failure models, based on exponential representation of 0 in terms of interfacial separation, have

been introduced in [76]. In 2-D, the model takes the form

O¢0(u ,ut) =t

Tt - out - t,3 ut (3.11)

where 6 = /2ut + un. is an effective displacement and /3 assigns different weights to the tangential and nor-

mal discontinuous displacements. The magnitude of the traction t = fT, + /- 2 Tt2 can be correspondingly

expressed as

t = or (3.12)

where er, is the maximum cohesive normal traction and 6, is a characteristic separation length. The expo-

nential function does not exactly reach zero, and interface debonding is assumed when 6 > 55c. Unloading

in this model is towards the origin, following a linear path as

t= x 5 V6 < 6m, (3.13)

6
max
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Bilinear model

In the bilinear model [76], t is expressed as a bilinear function of the interfacial separation as

5-5
S V 5

c 6  ,Umax >J

from which the normal and tangential tractions are derived as

T = 6 = _j 49j if J<J6

rmaxJ e 5  if Jc<6<6S (3.14)

0 if J>S6

€ 4€01 = Umax _3 2 6 if J < 6c
a= t 5j 56t 6c

Umax 5- 5Je 25t if < J < •S (3.15)

o if S > Se (3.16)

Figure 3.2(a,b) show the normal traction-separation response for St = 0 and tangential traction-separation

response for J,, = 0 respectively. When the normal displacement J,, is positive, the traction at the interface

increases linearly to a maximum value of Umax (point A) corresponding to a value of 6, before it starts

decreasing to zero at a value of 5e (point C). The unloading behavior in the hardening region is linear

following the loading path. In the softening region, the unloading proceeds along a different linear path from

the current position to the origin with a reduced stiffness. This is shown by the line BO in figure 3.2(b), for

which the t - S relation is

t . rmax ma -J 
5

5  c < Smar < Se and 5 < 5
ma, (3.17)

Reloading follows the path OBC demonstrating the irreversible nature of the damage process. Both normal

and tangential tractions vanish when 5 > 5J. The magnitudes of the tangential traction-displacement relation

are independent of the sign, and hence the behavior is same for St positive and negative. When the normal

22



displacement is negative in compression, stiff penalty springs with high stiffnesses are introduced between

the node-pairs at the interface. Unlike the polynomial and exponential models, the location of the separation

at debonding point is independent of the location of the peak of the curve for the bilinear model. This gives

flexibility to adjust interfacial parameters for the peak and debonding locations to match the experimental

observations.

3.2.3 Stress and Displacement Equations and Solution Methods

Progressive debonding in composite microstructures is solved using an incremental approach. In each in-

crement, a set of element and global equations are solved for stresses and displacements using the following

steps.

Element level kinematic equations

Local equations in each element are obtained by substituting stress interpolations (3.7) and displacement

interpolations (3.9) in the element energy functional of equation (3.1), and setting variations with respect

to the stress coefficients A/3", A/f• respectively to zero. This results in the weak forms of the element

kinematic relations.

ff[P•]T[s-][P•]dQ[0] 11 Om + I Om

[0] ,fn[Pc]T [Sc][Pc]dQ O3c + 3C }
fai flpm]T[n]Lc] -] fa n fjpm]T[nc][LC]dof [0]1[0 [] [0] fa 2 [Pc]T [nc][Lcj]da•

[ q+ Aq (

q~n + Aqm  - j (3.18)
fn[pcjT {E}jdQ

qc + AqC

or in a condensed form

[He]{10 + A3)} = [GCe]{q + Aq} - {R'} (3.19)
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Here [ne] and [nc] are matrices defined in terms of direction cosines of unit outward normal vectors to the

element boundary and matrix-inclusion interface respectively. The equation (6.42) is linear and is solved to

express the stress coefficients in terms of the nodal displacements.

Global traction reciprocity equations

The weak forms of the global traction continuity conditions are subsequently solved by setting the variation

of the total energy functional in equation (3.2) with respect to Aq, Aqm and Aqc, to zero. This results in

the weak form of the traction reciprocity conditions as:

fan, [Le]T[ne]T[Pm]daQ [0] M M

> - f,,,. [Lc] T [nc]T [Pm]dap2 [0] ----

[0] fo•. [Lc]T[nc]T[Pc]dQ

N~mLI{ +Atd

E_ - f, [U]T ({nc}T,,(u + Auut + Aut) + {tc}Tn(u, + Au, ut + Aut)) daQ

fIa- [Lc]T ({nc1T• (un + Aug, ut + Aut) + {tc}Ttr(un + Aun, ut + Aut)) dafQ

(3.20)

or in a condensed form
N N

± + } - {R (3.21)
e=1 e=1

Substituting (6.42) in (6.44) yields:

N N

j-[Ge]T [Hej]-([G']{q + Aq} - {R'}) = N-{Rj (3.22)
e=1 e=1
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The normal and tangential components of the interfacial separation are expressed as:

u, + Au, = {nc}T[Lc]{qm + Aqn - qC AqC}

ut + Aut = {tc}T[LC](qm + Aq m 
- qC - AqC} (3.23)

Following the evaluation of nodal displacements, stress coefficients are calculated in each element using the re-

lations (6.42). The stresses at any location within the element may then be assessed from the equations (3.7).

Solution Method: The equation (6.45) is nonlinear due to the relation between interfacial tractions and

interfacial displacements in the cohesive laws. A Newton-Raphson iteration method is consequently invoked

to solve for the increments of nodal displacement on the element boundaries and matrix-inclusion interfaces.

The linearized form of equation (6.45) for the j-th iteration is

dq
N N N

[ dqm  = - [G T([He]-I[Ge](q+Aq}J-
Ce=1 e~ l

dqc
or [{Ret} - (3.24)

This is iteratively solved to obtain the incremental nodal displacements

{Aq}jjl = {Aq}lj + dq}j , {Aqm}j+l = {Aqm}j + {dqm}j

{Aqc}j+l = {Aqc}j + {dqc}j (3.25)

The localized softening in interfacial decohesion can sometimes give rise to numerical instabilities in the

Newton-Raphson iteration, which is based on the smooth, invertible and well-conditioned Jacobian iteration

matrix, due to zero or negative stiffness. The arc-length solver has been proposed in [23, 24] as a method

of overcoming this by introducing an arc length as a replacement to the incremental load as the incremental

parameter and improving the convergence direction in the solution space. In the arc length method, the
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system equations(3.24) is modified with the introduction of the unknown loading parameter A as

[K 91J{dqg}' = (A3 + dA'){RRtj} - {Rit (3.26)

where dAj and {dqg}j are unknowns. Additionally an orthogonality condition is imposed as

{dqg}j. {Aq 9}j = 0. (3.27)

The corresponding coupled equation system to be solved is

F[Kg] -{Rg j dq I Ai{Rg~ j - JR }'jex ex z (3.28)
{Aqg}j [0] dA 1 0 J

Despite advantages of the arc-length method, the numerical algorithm for displacement solution, can in

some cases give rise to oscillations, especially around the peak traction in the cohesive models. The iterative

solutions do not converge, with the slope of the traction-displacement law, oscillating between large positive

and negative values. A regularization method, in which the Jacobian matrix is evaluated based on the

average of the positive and negative slopes of the cohesive models implemented in this case. To demonstrate

the effectiveness of this algorithm, an example with a square microstructure containing a single circular

fiber with a debonding interface is considered. The interface uses the bilinear model in equation(6.29) with

the properties oma, = 0.003, Jc = 0.00002, 5, = 0.00016, 6 = 0.707. The averaged stress-strain response

for the damaging composite is illustrated in figure 3.3. The Newton-Raphson iterative solver stops near

the peak, but the arc-length solver continues for the entire process. The drop in stress corresponds to the

ongoing debonding process, during which the regular NR solver is unstable. The resuming hardening process

corresponds to the arrest of debonding.
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3.2.4 Evaluation of volume averaged stresses and strains for debonding

The effective macroscopic response of a composite comprised of continuous fiber reinforcement is important

to study the homogenized material properties. This may be calculated volume averaging the local stress and

strain fields over the entire microscopic domain Q) (see [61]) as

au,(t) = jj (xkt)dV

=j W - j c12(x,, t)dV - aij(t). (3.29)

where Xk and t are the spatial coordinates and time respectively, and

1ij(W II ([ui(t)]nj + [uj(t)]ni)daQ (3.30)

aij (t) represents the effective strain field caused by the possible displacement jump at the interface due to
debonding. It is calculated along the interface (Mm with [ui(t)] denoting the displacement jump.

3.2.5 Stability of the VCFEM solutions

As discussed in [37, 68, 88], invariance of stresses with respect to coordinate transformations can be ensured

by a complete polynomial representation of the stress function @ij. The necessary conditions for stability

are that the tangent compliance modulus in the strain energy term be positive definite and that the finite-

dimensional stress space be spanned uniquely by the basis functions [Prm )] and [Pc]. Stability conditions of

the multi-field variational problem in VCFEM have been developed in detail in [88] and will not be repeated

in this chapter.

Zhong and Knauss ([117]) have developed a relation between numerical stability and material properties

of the matrix, inclusion and interface for displacement controlled problems in 1D. For stability, they have

shown that the slope of the softening region should be bounded by a number that is determined in terms
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material and interface properties and the size of the body L, or mathematically

2._E 8T(j)
Ž > ax[- ]isoftening (3.31)L-

where T(J) is the cohesive traction and R = EjE2 , E1 and E 2 being the Young's modulus of the two
Ej+E2

materials bonded by the cohesive zone. Larger softening slopes in the cohesive model make this criterion

difficult to satisfy. To examine this characteristic, a 1 x 1 square domain with a circular fiber of radius

0.5, is simulated for tension loading. The interface is lined with the polynomial, exponential and two

bilinear cohesive models as discussed in section 3.2.2. The material properties for matrix and fiber are

Ematri = 4.6 GPa, tvmatrix = 0.4, Einclusion - 210 GPa, vincjusion = 0.3 respectively. The cohesive zone

model parameters for all models are chosen to satisfy the stability condition stabcrit, and are tabulated

in table 3.5. For the same au and Jc, the polynomial model has a faster rate of decay to zero (;.• 25,)

in comparison with the exponential model (ný 49c). The bilinear models are chosen with J.e = 36., in (1)

and 6e = 556 in (2). The corresponding macroscopic stress-strain responses are illustrated in figure 3.4.

All models are able to simulate the entire debonding process from hardening to post-debonding. However,

the polynomial model with the largest softening slope undergoes a sudden drop near the peak and some

oscillations, before it stabilizes again.

3.2.6 Adaptive Enhancement of the Voronoi Cell FE Model

To establish rapid convergence of microscale solutions and enhance the solution accuracy, a-posteriori adap-

tivity has been incorporated in the Voronoi cell finite element model without debonding in [88]. Adaptations

based on suitably chosen error indicators are introduced as follows.

i. Adaptation to reduce traction reciprocity error on element boundaries and interfaces: To estimate the quality

of solution induced by the weak satisfaction of traction continuity on Voronoi cell element boundary, an
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average traction continuity error (A.T.R.E.) is defined as:

A.T.R.E. = ± e (3.32)NQ• + NQ 3.2

where

1 fanOt([Ill[ItI)½dO ] . 1 [f[a ([ -[Itllde W. : ý I and e' (3.33)
n* Jan, 1aQ eT n[ fnfdaQ

In equation (3.32) N, and Ný, are the total of all segments on all element boundaries &a2e and interfaces

aQ respectively. The stress a in the denominator is the absolute maximum principal value of the volume

averaged stress tensor in the microstructure, viz. ij = afad and n* the number of degrees of freedom per

node in the problem and [Itli is the traction discontinuity along different element boundaries and interfaces

in the microstructural model. The traction continuity error in equation (3.32) is minimized by selectively

enhancing boundary and interface displacement degrees of freedom in the directions of optimal displacement

enrichments. These directions minimize the virtual work due to traction discontinuity and are obtained from

components of the traction discontinuity in directions orthogonal to the original displacement field.

ii. Adaptation to improve stress concentration at the crack tip on the interface: As seen in figure 3.5(a),

node pairs are initially positioned at equal arc-lengths along the interface. Adaptation for reducing error in

traction continuity puts additional nodes on the interface as discussed in item (i). The node positioning is

thus far independent of the extent of debonding. However, the crack tip stresses are better represented if the

nodes are coincident or at lea~st near the crack tip. Correspondingly, a set of nodes in this model are moved

with the evolution of the cohesive zone to provide high resolution in the regions of high cohesive tractions

across interfaces during debonding. As seen in figure 3.5(a), when the peak of the cohesive zone model lies

between two neighboring nodes, one or both of them are moved close to the peak traction. For two adjacent

node pairs n and n + 1, if:

5,> 6, and 6 ,+1 <_ , or 6, < 6, and 6 ,n+i > 6c (3.34)
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then the critical point with a displacement jump J, exists between the two nodes. For a linear mapping, the

coordinates of the critical point are

XC= X+ &-6 " (xn Xn) Y+ Y± + (Yn+ - Y.) (3.35)

The node n may be moved to this location to generate an optimal stress representation. A similar interpo-

lation can be applied to interpolate the displacements at the critical point from the n - th and n + 1 - th

nodes. The results of the adaptation by the above two techniques are illustrated in figure 3.5(b), for the

square matrix with a single circular fiber. The maximum error in the traction reciprocity as a function of the

macroscopic strain is plotted in these figures. The error on the element boundary is reduced considerably

by node adaptivity that increases the number of nodes from four to fifteen on the element boundary. The

other set of results correspond to reduction in traction error on the interface due to node movement along

the interface. The effectiveness of the adaptation techniques is adequately established in these examples.

3.3 Numerical Examples

3.3.1 Model Validation

Prior to its application in problems of multi-fiber composite microstructures, the VCFE model with the

cohesive zone interface is validated for accuracy and reliability. In the first example VCFEM results are

compared with those in [69] for interfacial crack initiation and growth in a transversely loaded composite.

The microstructure is represented by a unit cell in a uniform hexagonal array with a fiber volume fraction

V$f = 0.5, as shown in figure 3.6(a). The unit cell dimensions are shown in the figure where r = 10,um and

b = 15.55/.m. Isotropic and linear elastic matrix and fiber properties are given in table 3.5. The matrix-fiber

interface is represented by linear elastic springs prior to failure. The normal and tangential tractions are

assumed to be independent and are proportional to displacement jumps in the two directions respectively,

i.e.:

T, = k,[un] , Tt = kt[ut] V [u,,] > 0 (3.36)
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where [.1 refers to jump across the interface, and k, and kt are normal and tangential stiffness constants.

The impenetrability constraint [us] _> 0 is enforced using a penalty spring. Debonding is assumed to initiate

in this model when the normal displacement jump [un] reaches a critical value 6 = l0nm. Post-debonding

tractions are assumed to be zero, i.e.

T, = Tt = 0 for u, > 5 (3.37)

The macroscopic stress-strain response, generated by VCFEM is compared with that in [69] in figure 3.6(b).

The two curves agree very well with a small difference during debonding.

In the second example, VCFEM predictions are compared with experiments on debonding of composites

that have been described in [37]. The experiment simulated here is conducted with a single specimens

in the form of a cruciform as shown in figure 3.7(a). The cruciform shape has been developed to avoid

stress singularity at the intersection of fiber-matrix interface and free surface, that occur in uniform width

specimens. The most significant advantage of the cruciform geometry is that it forces debond failure to

initiate in the central region of the specimen. The reinforcing fibers in the composite system are stainless

steel filaments, while the matrix is an epoxy resin that is cured with polyetheramine. The epoxy matrix is

transparent and allows visualization of the debonding process at the fiber-matrix interface. A very thin film

of weak strength freekote (< 0.1 nzr) is inserted as the interface material. This allows a somewhat stable

growth of the debond crack. The model specimens are loaded in tension on a servo-hydraulic testing machine.

The onset of fiber-matrix debonding is identified with a sharp change in the slope of the experimental stress-

strain curve in figure 3.7(b). Subsequent loading proceeds with a lower stress-strain slope, due to a reduced

load carrying capability of the partially debonded fiber. Following failure, the specimens are sectioned at

the center and fluorescent dye penetration is used to determine the total angle of debond as approximately

850 as shown in figure 3.7(c). The cohesive zone parameters have been determined in [37] by solving an

inverse problem in which the difference between the experimental and simulated results is minimized. For

the bilinear model the cohesive parameters are: 0max = O.O037GPa, 6, = 0.0028, 6e = 0.0035, and 0 = 0.707.
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The geometric properties of the composite simulated include a 6.82 mm x 6.0 mm domain with a circular

fiber of radius 2.36 mm. The material properties are: Esteel = 210GPa, vstee,- = 0.3, Eepoxy = 4.6GPa and

epo•Y -= 0.4. The macroscopic stress-strain plot of the simulation in figure 3.7(b), match the experimental

result very well. Furthermore, the simulated debonding angle in the composite microstructure is obtained

to be 901 as shown in figure 3.7(d). Both macroscopic and microscopic results obtained from VCFEM

simulations are found to yield satisfactory comparison with experiments.

3.3.2 Effect of interfacial properties on debonding

The shape of the traction displacement curve in the cohesive zone model plays an important role in the

simulation of initiation and progress of debonding in composite microstructures. The total cohesive energy

has been split into an intrinsic energy dissipation (Fint) and an extrinsic cohesive energy dissipation(Fezt)

in [181, depending on the ascending and descending portions of the curve. The ratio of the extrinsic and

intrinsic cohesive energy energies 0 = -- !, is used to denote a shape factor for the cohesive law. The

VCFEM with the bilinear cohesive law is used to study debonding in (i) a single fiber microstructure, (ii)

a random microstructure with a cluster, and (iii) a real micrograph of fiber reinforced composite with 264

fibers.

Microstructure with a single fiber

The single fiber microstructure of the previous section with the bilinear cohesive model interface, is simulated

with four different sets of cohesive zone parameters listed in table 3.5. As shown in the inset of figure 3.8,

the sets A, B and C have the same peak stress (um•ax), whereas the set D has a peak stress of 2uma,. The

shape factor V for sets B and D are 2.0, while those for A and C are smaller. The macroscopic response

for the different interface laws are illustrated in figure 3.8. The post-debonding responses are almost same

for all cases. However, significant differences exist in the softening region. The case B with larger V; and

smaller stiffness (due to the softer interface), compared to cases A and C debonds later. The case D with a

larger oa, exhibits a totally different macroscopic response in the softening region. The initial slope of a

macroscopic stress-strain plot depends on the hardening slope of the cohesive law, because of stress transfer
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at the interface. The subsequent failure behavior is determined by the softening part of the cohesive curve.

For the same peak ao,, and the total cohesive energy, the debonding behavior has a considerable dependence

of the shape factor 0. Larger drops in the stress-strain plots are observed for larger shape factors.

Random distributions with and without cluster

This example is constructed to examine effect of interfacial laws on the debonding behavior of multi-fiber

microstructures. Specifically, a random microstructure and a clustered microstructure, both with 49 fibers

as shown in figures 3.9(a) and (b) are considered.

The cluster contains 8 fibers. Three sets of cohesive law parameters are implemented for each microstruc-

ture as listed in table 3.5. The sets A and C have the same omare and J,, but the shape factor V for C

is larger. The peak stress ,rnax for B is relatively smaller. As for the single fiber case, the macroscopic

stress-strain plots in figures 3.9(c) and (d) show considerable dependence on the shape factor and peak

stress. Damage initiation and propagation in the microstructure is affected considerably by the shape of the

cohesive zone models for two spatial distributions. The contour plots of o,. in figure 3.10 illustrate different

debonding propagation paths for the different interfaces and distributions.

The locations of the debond initiation is the same for the different cohesive laws. For the clustered

distribution, the case C shows a clear debond propagation path in comparison with the other two.

3.3.3 A real micrograph with 264 fibers

In this example, an optical micrograph of a real composite shown in figure 3.11(a), is modeled by VCFEM.

The micrograph is adapted to a computational domain and tessellated into a mesh of Voronoi elements,

as shown in figure 3.11(b). The material properties for matrix, fiber and interface are: Est,,l = 210GPa,

/teel -= 0.3, Eepoxy = 4.6GPa, vlpoly = 0.4, ac = 5MPa, J. =0.000051, and /3=0.707. Simulations with two

different cohesive law shape factors, 0 1 = 0.138 and 0 2 = 0.197, generate two different debonding paths. A

well defined damage path is observed in figure 3.11(d) for the case with the higher shape factor. For the

lower 01, a bifurcation is seen in the damage paths.
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The above examples show conclusively that in addition to the cohesive energy, 0 maI and J, the shape

factor plays an important role in determining the macroscopic softening response as well as the debonding

path. When 0 is large the debonding occurs later and there is a sudden drop in the macroscopic stress-strain

response. Furthermore, the path of microscopic debond propagation is more defined for higher shape factors.

3.4 Microstructural Characteristics on the Initiation of Debond-

ing

From a microstructure design perspective, two aspects are of interest to the composite community. The first

aspect is, at what macroscopic strain does microstructural debonding initiate for a given multi-fiber config-

uration. The second is the location where this occurs. In other words, what are the local microstructural

characteristics that trigger interface failure. Microstructural characterization of non-homogeneous compos-

ites has been conducted in [39, 40[ using various statistical functions of geometric parameters. These include

the cumulative function and probability density functions of local area fraction and near-neighbor distances,

the second order intensity function K(r) and the pair distribution function g(r) etc. These functions help

identify spatial distributions like uniform, random or clustered patterns. The present example is aimed at

the study of the effect of microstructural morphology on the damage evolution.

A special function is constructed in this example as the weighted sum of various geometric parameters

that can contribute to the initiation of debonding. For the k - th fiber, the function is defined as:

n

Gk = s, (3.38)
i= 1

where wi is the weight, and Si are specific geometric parameters describing the local spatial distribution. In

this work, four different parameters are used and hence n = 4. For a domain including N fibers or inclusions,

normalized parameters are defined as
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1. Sk: is a measure of the normalized local area fraction for the k-th fiber.

(LAF)k - Min (LAF)'
sk 1Iýj<N

1 = Max (LAF)J - Min (LAF)J (3.39)

IjN(L j I<j<N

where N is the total number of fibers and (LAF)i is the local area fraction for the j-th fiber, which

is evaluated as the ratio of the fiber cross-sectional area to the area of the respective Voronoi cell (see

[39, 40]).

2. Sk: is a measure of the normalized inverse of the nearest neighbor distance for the k-th fiber

(INND)k - Min (INND)I
S k = :<s'< N .0

Max (INND)' - Min (INND)i (3.40)

I<j<N 1<j<N

where (INND)j is the inverse of nearest neighbor distance of j-th fiber. The near neighbors of a given

fiber are those that share common edges of the Voronoi cell.

3. Sk: is a measure of the normalized kth fiber size.

(FS)k - Min (FS)j
3• = - ~ < (3.41)

Max (FS)J - Min (FS)3
I<j<N I•j<N

where (FS)i is the area of j-th fiber.

4. S4k: is a measure of the normalized average size of fibers around the k-th fiber.

(AFS)k - Min (AFS)-
I<j<NS4 = Max (AFS)i - Min (AFS)J (3.42)

I<j<N l<jSN

where (AFS)j is the average area of fibers around j-th fiber. The range of each S1 is [0, 1] in the above

definitions. Both S3 and S4 are zero for microstructures containing same sized fibers, but they affect

microstructures with size variations. The weights in the equation 3.38 are assigned selectively for high effec-

tiveness of the characterization function Gk. Four representative microstructures under simple tension are

considered for evaluating the effect of morphology on debonding. They are (a) random microstructure with
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49 equi-sized fibers of figure 3.9(a), (b) the clustered microstructure with 49 equi-sized fibers of figure 3.9(b),

(c) a random microstructure with 38 variable-sized fibers (ratio of maximum to minimum radius =1.62), and

(d) a clustered microstructure with 55 variable-sized fibers (ratio of maximum to minimum radius =2.64).

The bilinear cohesive law with oc, = 12MPa, J. = 0.000052, 3e = 0.000094, and 0l= 0.707 is used for the

interfaces. Material properties are Efibef = 210GPa, Vfiber = 0.3, Ematrix = 4.6GPa and Vmatrix = 0.4.

To understand the effect of each of the parameters Sik on the initiation of debonding in the different

microstructures, a sensitivity study is conducted. In this study, debonding simulations are conducted for

each microstructure and the location of initiation is noted. Subsequently, the characterization function Gk

with the weights wi set to 1 and 0 to manifest each Sk. A summary of the results for each of the S,'s is

provided in table 3.5. For the microstructures with equi-sized fibers, S' and S2 are good indicators of the

initial debonding location, while S 3 and S4 do not since they reflect size effects. On the other hand, for

the microstructures with variable sizes, S3 and S4 are better predictors of the initial debonding location in

comparison with S1 and S2. Interfacial debonding is thus sensitive to the fiber size in addition to local area

fraction and nearest neighbor distance. The weights wi are adjusted to optimal values after several iterations

and are w1=0.1, w2=0.4, w3 =1.5, and w4=1.5. Figure 3.5 shows the contour plots for Gk and the locations

of initial debonding with the stresses in the load direction. The geometric indicator is found to catch the

initiation location adequately. Finally the macroscopic debond initiation strain is presented against values of

the maximum Gk in each microstructure in table 3.5. It is clear that the function Gk has a direct bearing on

the strain, and larger values signal a smaller failure strain. This implies the strength of this characterization

function is predicting microstructural failure.

3.5 Conclusions

Numerical simulations are conducted with the polynomial, exponential and bilinear cohesive laws to un-

derstand the effect of cohesive laws on the debonding process. It is observed that in addition to the total

cohesive energy, the shape of the traction-displacement has an effect on initiation and especially on propaga-

36



tion of debonding through the microstructure. The bilinear model which has more flexibility with respect to

ascending and descending portions of the cohesive curve is chosen for subsequent debonding simulations. The

sensitivity of debonding in random and clustered microstructures to various shapes in the bilinear cohesive

model is studied. The clustered microstructures initiate debonding at smaller strains. Also for the clustered

microstructure, the debonding is observed to proceed along defined paths rather than in a random manner

especially for cohesive curve with larger softening energy. Finally, a quantitative characterization function is

developed in terms of weighted microstructural geometric features like local area fraction, nearest neighbor

distance, fiber size and neighboring fiber size, to predict the location of damage initiation. The sensitivity

of the damage to the various geometric features is utilized to determine the weights. Result show that the

function is quite successful in predicting the location of damage onset with good accuracy. This study reveals

the significance of analyzing large regions of the microstructure and proves the effectiveness of the VCFEM

analysis for the same. The Voronoi cells also provide the essential link between the microstructural features

and response that is important in damage analysis.
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Polynomial Exponential Bilinear

Parameter I Parameter II
crmaz (GPa) 0.003 0.003 0.003 0.003

5, 0.000167 0.000167 0.000167 0.000167
6, 0.0005 0.000835 0.0005 0.000835
ot 10.0

13 0.707 0.707 0.707

Table 3.1: Interfacial properties for various cohesive zone models.

EA(GPa) vA ET(GPa) vT GA(GPa) GT(GPa) KT(GPa)

Graphite fiber 232 0.279 15.0 0.49 24.0 5.03 15.0
Epoxy matrix 5.35 0.354 5.35 0.354 1.976 1.976 6.76

Table 3.2: Material elastic properties for simulation of hexagonal unit cell in Moran(1991).
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A B C D
am.ax (GPa) 0.003 0.003 0.003 0.006

0.0001 0.0002 0.00005 0.0001
0.0003 0.0003 0.0003 0.00015

/1 0.707 0.707 0.707 0.707
0 0.5 2.0 0.2 2.0

Table 3.3: Cohesive law parameters with variation in the shape.

Random Cluster
A B C A B C

umax(GPa) 0.0012 0.0006 0.0012 0.0012 0.0006 0.0012
5, 0.000052 0.000104 0.000104 0.000052 0.000104 0.000104
J, 0.000145 0.000145 0.000145 0.000195 0.000195 0.000195
13 0.707 0.707 0.707 0.707 0.707 0.707

0.559 2.54 2.54 0.364 1.18 1.18

Table 3.4: Interfacial Properties.

Weights Random Cluster Variable size Variable size with Cluster
W1 W 2  W3 W4

1 0 0 0 Strong Strong Weak Weak
0 1 0 0 Strong Strong Weak Weak
0 0 1 0 Weak Weak Strong Strong
0 0 0 1 Weak Weak Strong Strong

Table 3.5: Sensitivity of debonding initiation to parameter Sý.
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Random Cluster Varying size Varying size & Cluster
Maximum G' 0.436 0.445 1.21 1.33

Strain 0.0018 0.00176 0.0015 0.0015

Table 3.6: Debonding initiation and characterization.
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Figure 3.1: (a) Composite microstructure tessellated into Voronoi mesh (b) a typical Voronoi cell element
with interface
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Figure 3.2: (a) Normal and (b) tangential traction-displacement behavior for a bilinear cohesive zone model.
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Figure 3.3: Macroscopic stress-strain response demonstrating the improvement with arc-length stability.
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Figure 3: Comparison of macroscopic stress-strain response for various cohesive models.
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Figure 3.5: (a) Node adaptation on element boundary and interface (b) maximum traction discontinuity on

element boundary and interface before and after adaptation
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Figure 3.6: (a) Unit cell model of the microstructure with hexagonal array, (b) comparison of macroscopic
stress-strain response.
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Figure 3.7: Comparison of simulation with experiment; (a) faceview of the debonded cruciform specimen
showing dye penetration, (b) comparison of macroscopic stress-strain response, (c) the cross section indi-
cating debonding angle as the limits of the dye penetrated region, (d) contour plot of the microscopic axial
stress(GPa)
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Figure 3.8: Macroscopic stress-strain response for various shape factors of the cohesive zone models.
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Figure 3.9: The Voronoi cell mnesh for the (a) random and (b) clustered microstructures; the macroscopic
stress-strain response for the (c) random and (b) clustered microstructure.
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Figure 3.10: Contour plots showing the stress axx(GPa) and damage evolution in the microstructure: (a)
random microstructure with cohesive property A at E=0.00180, (b) clustered microstructure with cohesive
property A at E=0.00270. (c) random microstructure with cohesive property B at E=0.00180. (d) clustered
microstructure with cohesive property A at e=0.00270. (e) random microstructure with cohesive property
C at c=0.00195. (f) clustered microstructure with cohesive property A at E=0.00270.
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Figure 3.11: (a) Optical micrograph of a real composite with 264 fibers, (b) computational model incorpo-
rating the Voronoi cell mesh, (c) oa,,1 (GPa) contour plot at E,,.=0.00138 for 6,=0.00042 and V)=0.138, (d)
oa,..(GPa) contour plot at c,,,= 0.000967 for J,=0.0O031,and 0b=0.197,
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Figure 3.12: Microstructure characterization function Gk and the corresponding initial debonding in the
o-z•(GPa) contour plot: (a,b) for random microstructure, (c,d) for clustered microstructure, (e,f) for varying
size microstructure, and (g,h) for varying size and clustered microstructure.
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Chapter 4

The Extended Voronoi Cell Finite

Element Model For Multiple Cohesive

Cracks Propagation

4.1 Introduction

Numerical analysis and simulation of the growth of multiple cracks in materials is a challenging enterprise

due to morphological and constitutive complexities that govern its growth. The conventional finite element

method suffers from very slow convergence since the element formulation does not account for high gradients

and singularities. Even a very high density mesh cannot overcome pathological mesh dependence near the

crack tips and avoid biasing the direction of crack propagation.

In this chapter, an extended VCFEM or X-VCFEM is developed for modeling the growth of multiple cohe-

sive cracks in a brittle material. The model accounts for interaction between cracks and invokes an adaptive

crack growth formulation to represent the continuously changing direction of evolving cracks. X-VCFEM

augments the conventional VCFEM model by incorporating multi-resolution wavelet functions [41, 51, 80]

in the vicinity of the crack tip, in addition to branch functions based on level set methods. The incremental
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crack propagation direction and length are adaptively determined by a cohesive energy based criterion. No

remeshing is needed in X-VCFEM for simulating crack growth, and this adds to its desirability and effec-

tiveness. It begins with the X-VCFEM formulation, followed by numerical example showing the convergence

of this model. Then, X-VCFEM is used to understand the influence of cohesive parameters, e.g. peak

stress and critical separation on crack growth in a monolithic brittle material. Subsequently, the effect of

morphological distributions including crack interaction, clustering, alignment, etc. on growth and merging

are studied as important factors critical to the failure process.

4.2 Voronoi Cell Fem Formulation for Multiple Propagating Cracks

The Voronoi cell finite element mesh for a brittle matrix with a dispersion of pre-existing cracks is shown

in figure 4.1(a). The typical Voronoi cell mesh corresponds to an unstructured mesh that is generated by

Dirichlet or Voronoi tessellation of the domain, based on the position, shape and size of heterogeneities (in-

clusion, void, crack etc.). Various tessellation schemes have been discussed and developed in [37, 681. While

the name Voronoi cell has been historically used because of its association with point seeds in the generation

process, the cells used in VCFEM may be variants of this construct. Essentially they represent neighbor-

hood or regions of influence for each heterogeneity. Subsequently the Voronoi cell FE formulation considers

each cell as a super-element consisting of a heterogeneity and its neighborhood surrounding matrix [68, 88]

without any further subdivision. The interfacial debonding analyses in [37, 58] invoke the cohesive zone

models to represent the growth of interfacial crack. However the main difference between that formulation

and the present one is that, in the present case the path of the crack is arbitrary and is a-priori unknown.

This poses significant challenges that have been overcome with the X-VCFEM formulation.

Consider a pre-cracked microstructural region Q2 consisting of N cracks as shown in figure 4.1(a). The

region is divided into an unstructured finite element mesh of arbitrary Voronoi cells. A typical VC element

Q2e containing a crack and its neighboring matrix is depicted in figure 4.1(b). The element boundary 9Ql with

outward normal nE may consist of regions of prescribed traction Frc, prescribed displacement rU, and inter-
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element edges Fine, i.e. E = rte U rue U Frne. Furthermore, each element consists of a crack containing

a fracture process zone that is represented by a cohesive zone model. The incompatible displacement field

across the crack Fcr, is facilitated through a set of connected node-pairs along the crack length. The node-pair

merges at the crack tip by enforcing the same displacement. The normal along the crack path is denoted by

ncr. For the VCFEM element formulation, the micromechanics boundary value problem is described as:

Find (a, uE, uc") E T x V x V"C satisfying

V. o + f=0 and E E c Q (a)

uE =ionFru , an E=tionFt and o.n =tchonFc r (b) (4.1)

The variables oa, c, B and f are the equilibrated stress fields, the corresponding strain fields, the complimen-

tary energy and body forces per unit volume respectively in the element interior. T, yE and vcr correspond

to Hilbert spaces containing the stress and displacement solutions respectively. uE is the kinematically

admissible displacement field on the element boundary aQE and ucr represents the displacements on the

internal cohesive-crack surfaces Fcr. Variables with superscript E are on the element boundary while those

with superscripts cr correspond to the crack surface. The traction tcoh between node-pairs on the crack

surface are modeled by the cohesive zone traction-separation law. The VCFEM formulation is based on

the assumed stress hybrid finite element method, in which stationarity conditions of the element energy

functional in the variational principle yields weak forms of the kinematic equation and traction reciprocity

conditions, as Euler equations. In the small deformation elasticity incremental formulation for evolving

cracks, the element energy functional He is defined in terms of increments of stresses and displacements as:

H (u ij, , Aufs,0ui, Aucr) = - j AB(Orij, Arij)dQ - cjAojjdQ

± j (o,, ± Acrij)nf u + AuE)da9Q - j (E, + AUE)(udi +

2 2

(±rj +( Aoj)n,(u± + AU r)dP,, - (aij + Aolij)nj7(ui + Au )dPcr

1 1 2 2

tco r Ur
•F [• ui--Ai i 2

I- ' C ] A doh -,ý - u )drcr (4.2)
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where B = 1a : S : a is the complimentary energy density and AB( 1 ij, Ao'ij) is its increment due to stress

1 2

increase. S is the material compliance matrix. The notations (e) and (e) represent two sides of the internal

cohesive crack surface. The last term provides the work done by the cohesive tractions tfoh due to crack

surface separation. In VCFE formulation, the equilibrium conditions and constitutive relations in the matrix

and the compatibility conditions on the element boundary and crack surface are satisfied a-priori in a strong

sense. The element kinematic equation:

Vue = Ce in Q. (4.3)

is however satisfied in a weak sense from the stationary condition of the element energy functional in

equation(4.2). The weak form is obtained by setting the first variation of 1e with respect to stress in-

crements to zero, i.e.

OAB jUo + Au) daq.
+i~ ij ±~) JAi dQ ± SAai Eý

1 f2 2

+ C rc,.j ('d,- A'jnj Tr= 44

Solution of equation (4.4) yields domain stresses. Furthermore, the VOFE formulation assumes weak sat-

isfaction of the traction reciprocity conditions on (i) the inter-element boundary rie,, and (iii) the domain

1 2
traction boundary Fte and (iii) the crack surfaces Per and cr,:

(aoj + Aoij)nE+ = -(oij + Aojj)nE- on riee (inter-element boundary)

(Orij + Aaij)nf = Fi + Aii on Pte (traction boundary)

(Uj + Aaj)'njr = (ajj + AUrj) 2 njr on Pcr (4.5)

In the variational principle, the weak form is obtained by setting the first variation of the total energy

1 2
functional [I = ENgI He with respect to the displacements AuE, Aucr and A\uc respectively, to zero, or
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N

E j[(oij + iAoij)rij7uE da§2 - j(fi + A,) I c6UE d~tm = 0
e=1 Q

6u E Q={E eo(& E):vEE=0onPuj e}Veona&e (4.6)

and

1
[(uj + A±Tj)njr - Q1 65u4' dr, = 0

++ i]Su' dFcr

V ucr e Vcr, Veon Fcr (4.7)

1 1 2 22fu + i, u -A i tcohd ar
where 0 = f , td(u u - u•) is the cohesive energy function and 0' -o,.

4.2.1 Cohesive zone models for crack propagation

Cohesive zone models, introduced in [6, 29] and developed in [71, 72, 73, 104, 34, 35, 42, 76], are effective in

depicting material failure as a separation process across an extended crack tip or fracture process zone. In

these models, the tractions across the crack reach a maximum, subsequently decrease and eventually vanish

with increasing separation across the crack. The cohesive model used in this chapter is a three parameter

rate independent linear cohesive model, proposed in [42, 76]. This is an extrinsic (two stage) model which

has an infinite stiffness or slope in the rising portion of the traction-separation law up to a peak traction

value. This is followed by linear descending segment till a zero traction value is reached. The model assumes

a free cohesive energy potential ¢ such that the traction across the cohesive surface is expressed as:

tcoh 90€ , t (4.8)
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Here 3,, and St correspond to the normal and tangential components of the opening displacements over the

cohesive surface in the n and t directions respectively. An effective opening displacement is defined as

S= V J ±/ + 0262 (4.9)

where,/ is a coupling coefficient to allow assignment of different weights to normal and tangential opening

displacements. Consequently the cohesive surface traction reduces to

tcoh = t(62Stt + San), where t = -= coh
2

3 -2tch
2  (4.10)

where tcoh and t•°h are the normal and tangential components of surface tractions. The effective cohesive

force t in this model for increasing 6 takes the form

ma(Se - 6) VJ < J, (4.11)

OVj _> J (4.12)

3 e corresponds to the separation at which t goes to zero and a,, is the peak value of t. The effective normal

traction-separation response of this model is depicted in figure (4.2). In the softening region, Unloading from

any point on the traction-separation curve, proceeds along a linear path from the current position to the

origin as shown by the line BO in figure 4.2. The corresponding t - S relation is

t = Umax 6e - Sma 3 J5 <5 <5
Je 

5 max - maz - e (4.13)

Reloading follows the path OBC with a reduced stiffness in comparison with the original stiffness. Traction

vanishes for 6 > J,.

For negative normal displacement (compression), stiff penalty springs with high stiffness are introduced be-

tween the node-pairs on the crack face. To define the tangent stiffness matrix, it is necessary to distinguish

between crack initiation (S = 0) and crack propagation from an initialized state (S > 0). In the former,
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tcoh - t, and =oh 0 are assumed, which implies that the initiation is in pure mode I. The cohesive pa-

rameters in this study are calibrated from experiments done for epoxy-steel composites as discussed in [58, 37].

Recent experimental-computational studies on composites, conducted in [100] show that the three or four

parameter cohesive models are more suitable for modeling interfacial debonding in comparison with the two

parameter models based on Ferrante's law [71, 72, 73]. Similar conclusions have also been drawn in the work

by Ghosh et. al. [37, 58], where bilinear cohesive models were chosen to study interfacial debonding in fiber

reinforced composites.

4.2.2 General element assumptions and weak form

In the absence of body forces, two dimensional stress fields satisfying equilibrium relations can be generated

from the Airy's stress function 1'(x, y). In the incremental formulation, stress increments are obtained from

derivatives of the stress functions A4)(x, y) as:

~ j a2a~p|~KZ J = [p(x,y)]{Af3} (.4

where {A,6} is the column of unknown stress increment coefficients, associated with the stress interpolation

matrix [P(x,y)]. Convergence properties and efficiency of VCFEM depend on the choice of 4). These

functions should adequately account for the geometry and location of the heterogeneity in the element.

Polynomial functions alone do not contribute to this requirement and hence lead to poor convergence [68, 88].

Consequently, stress functions in X-VCFEM are constructed from different expansion functions that have

complementary effects on the solution convergence for the propagating crack. Compatible displacement fields

satisfying inter-element continuity on the element boundary (9Q' and intra-element continuity on the crack
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face F,. are generated by interpolation of nodal displacements, [37, 68, 881 as:

{Aue} = [Lg]{Aqe} on 8f2e

1 1 1 1

{AuC} = [L,,]{Aqcrj on rcr,

2 2 2 2
{Au'} = [L,.]{Aq r} on re- (4.15)

1 2
The interpolation matrices [LeI, [Lcj, [Lcr] for the nodal displacements on the respective boundaries are

constructed using standard linear or hierarchical shape functions.

Remark: It is desirable that the displacement interpolations on the crack surface in equation (4.15) have ad-

equate resolution, consistent with the high resolution in the stress fields near the crack tip. To accommodate

this, hierarchical shape functions are added to standard linear shape functions to describe displacements on

the crack surface as:

4
ucr Z Ni(s) * qýr (4.16)

t=1

where N, ½(I - s), N2 --- + s), N'3 =( I(S2 1)jndN S='3

S 2  
2  -1), and N4  s - s). The first two are the standard

linear shape functions, while the last two are the hierarchical shape functions in natural coordinates s. The

degrees of freedom corresponding to higher order shape functions (i.e. to quadratic, cubic, etc.) cannot be

interpreted as nodal values of displacement. Instead, they are values of some higher order derivatives of the

solution at the midpoints (or linear combination of these derivatives).

Substituting the interpolations of stress and displacement fields from equations (4.14) and (4.15) into
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equation (4.2) results in the matrix form of the element complimentary energy

e 1 p{/3 + A3}IT[H] {f3 + AO} + p+A/3}rT [G]e{qe + Aq'}

{13 ± A13}T[G•f]{qcr + Aq} - {t} T {qe + Aq'}
2 2 2

1{3 + A)3} T [G-]{qcr + Aqcr}
1 1 2 2

(U+AUU•�•� 2

S.tcohd ... -U, r)drcr (4.17)1 2Ir U

where

[H] = j [plT [S][PldQ [Gel =_j [p]T [n'][Lld8a

[GCrl = J [P]T [nc][LcrjdFr [Ge] = j [P] T [n2][L:drcr

j= +rt {±Ai}T[Lelfdtm (4.18)

Construction of appropriate stress functions with optimally high resolution is necessary for accurately de-

picting high stress gradients near the crack tip.

4.2.3 Stability conditions

Following the stability conditions derived for displacement-based and stress-based finite element approxima-

tions in [5, 15, 1111, the stability conditions of the stress-displacement field variational problem in X-VCFEM

depend on the following conditions.

"* The matrix [H] should be positive definite. From the definition of [H] in equation (4.18), the necessary

condition for it to be positive definite is that the compliance tensor [S] be positive definite, which is

true for elastic problems.

"* A second condition is that the finite-dimensional stress subspaces T be spanned uniquely by the basis

functions [P]. This is satisfied by assuring linear independence of the columns of basis functions [P],

which also guarantees the invertibility of [H].
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* Additional stability conditions should be satisfied to guarantee non-zero stress parameters 3 for all

non-rigid body displacement fields on the element boundary uE or on the crack face uer. This is

accomplished by careful choice of the dimensions of the stress and displacement subspaces, i.e. np >

nq +n' *2-3, where np is the number of/3 parameters, and nE and nc are the number of displacement

degrees of freedom on the element boundary and crack face respectively.

4.3 Creation of Enriched Stress Functions in X-VCFEM

VCFEM formulations for micromechanical analysis of heterogeneous materials have incorporated polynomial

and reciprocal stress functions based on analytical micromechanics results in [37, 68, 88, 38]. In the present

work, the heterogeneity is in the form of an evolving cohesive crack. Two conditions need to be considered

in the choice of stress functions. The first is that it should adequately represent crack tip high stress

concentration as required by the cohesive zone models. Polynomial functions alone are unable to satisfy

this requirement and hence suffers from poor convergence. The second condition is that the stress function

should account for stress jump across the crack surface. The stress functions in X-VCFEM incorporate three

different components, namely: (a) a purely polynomial function 4Po!y to yield the far field stress distributions

away from the crack tip, (b) a branch function Pb'anch that is constructed from level set functions, and (c)

a multi-resolution wavelet function 4)1v1t to account for the moving crack tip stress concentration. Thus,

_D =poly + Dbranch ± pwvlt

4.3.1 Pure Polynomial Forms of Stress Function:

The pure polynomial component of the stress function 4PP1ly is written in terms of scaled local coordinates

(• = -, -L) with origin at the element centroid (x,, Yc), as:

Pn,qn

p=0,q=-0

The scaling parameter in the coordinate representation is L = y/max(x - x.) × max(y - Yc)

V(x, y) E aQe. The use of the scaled local coordinates (, ?j), as opposed to global coordinates (x, y) in the
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construction of stress functions, prevents ill conditioning of the [H] matrix due to the high exponents of

(x, y) in FP"oY. As discussed in [96], invariance of stresses with respect to coordinate transformations can

be ensured by a complete polynomial representation of plJ"y, while stability of the algorithm requires linear

independence of the columns of stresses derived from JPOIY.

4.3.2 Branch Stress Functions Using Level Set Methods

The branch function 41baflch facilitates jumps in stresses across the crack surfaces. These functions should

not affect the solutions in the continuous region beyond the crack. This construction requires a functional

representation of the surface or line of discontinuity. Level set methods, introduced by Sethian [2, 93] for

following the evolution of interfaces, is ideal for representing arbitrary contours. The method has been used

by Belytschko and coworkers in [12] for the construction of branch functions associated with the partition of

unity in a displacement based FEM formulation. The standard level set methods invoke continuous evolution

of the entire surface of discontinuity. However for problems involving cracks, the only evolution occurs at the

crack tip and the crack surface needs to be frozen behind tip. A vector level set method has been developed in

[108, 107] to freeze the crack surface in accordance with geometric updating. This method is used in this work.

An approximation to the crack surface [,r in figure 4.1 is constructed to describe the discontinuous

stress fields across crack paths. As shown in figure 4.3(a), the discontinuous surface is expressed by a signed

distance function f(x) defined as

f(x) = min 11 x - R 11 sign(n+ . (x - X)) (4.20)
REF

where i: is a point on the surface of discontinuity and n+ is a unit normal pointing in the direction of the

region of positive distance function.

Consequently, R is the closest point projection of any point x on Per. In order to describe the crack

path accurately, the signed function f(x) is evaluated at every integration point in the Voronoi cell element

directly. The process of constructing branch functions involves steps that are described below.
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* Radial distance functions to the two crack tips r, (x) and r2(x) and the corresponding angular positions

01 (x) and 02 (x) are depicted in figure 4.3(a). These functions are expressed in terms of coordinates of

local systems (ý,i7) with origins at the crack tips. For the local system at crack tip 1, the coordinates

of x are (ý1,717). In accordance with the definition of the signed distance function, the radial distance

and angle functions are expressed as

7r - sin-' { < 0, f >_ 0

ri(x)-- 2 +r] and 01 (x) = _i -_ { <0,f <0 (4.21)

sin-, 
• >_ 0

Similarly, the radial distance and angle functions for the coordinate system at crack tip 2 are defined

as:

Sr-sin-l7 V 2 <0,f>0

r2r2 (x) - •/2 -+-r/ and 02 (x) = ]_inl -zr {2 <0O,f < 0 (4.22)

sin- 1lL 62 >0
2

* The branched stress function is constructed in terms of the functions f(x), 01, rl, 02, and r2, as:

,branch St_ rlsin-- 2c (4.23)

s=O,t=O

The terms r2~ and r2 in •branch are necessary for avoiding crack tip singularity in the stresses due to

this function and for improving the accuracy. Along the tangential extension to the crack path at the

tip 1, Dbranch is zero since sin 01 = 0. Hence Dbranch does not contribute to the stresses ahead of the2

crack tip 1. In an analogous manner, •brach goes to zero along the extension to the crack path at

the tip 2, since cos-0 = 0. Therefore 4 )brnch does not contribute to the stresses in this region also.
2

However, along the crack surface between the two crack tips, sin-0 = +1 on both sides of the crack, and

cos- = 1. This renders Dbranch in equation (4.23) discontinuous across the crack path. In 4pbranch, 01

is used to create the discontinuity across the crack surface, while 02 eliminates the discontinuity ahead
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of crack tip 2. In some special instances with only one crack tip such as a panel with an edge crack,

equation (4.23) may be simplified by removing r 2 and 02 dependence to yield

r , sin - /t (4.24)

s,t

A coordinate transformation is required to obtain stress components in the global coordinate system from

Dbranch(ý, 77) based on the local coordinate system.

2pbranch a0 24 &brach

branch an1 -

a2 Pbr ach a2 ,br anchI = [Qb]T [Qb]
a2 (Dbrah a2 4 ,branch

Orxy ayy )2Y -_ 2&772

a2 •bra-nh a2,Pbr-anch

C4281J2 aC

(4.25)

where [Qb] is the transformation matrix from (1,7r1) and (62,772) systems to (x, y), and is expressed as

ay Ox

a_• a_•

[Qf1 ay ax (4.26)
a'12 872
ay ax

8ý2 a8_2
ay ax

The branch function is evaluated at every integration point in the element. A typical function rbranch

for s = 0 and t = 0 is plotted in figure 4.3(b). The plot shows that the function is continuous everywhere in

the domain except across the crack surface. The example of a double cantilever beam under a sliding load,

as shown in figure 4.7, explains the effect of level-set method based branch functions. In figure 4.7(a), the

dimension is a = 1.57n. Figure 4.7(b) shows the stress o, plots as a function of y at x = -0.3m. The stress

functions are constructed with and without branch functions in this example. o2, changes its sign with a

jump in its magnitude on different sides of the crack and the jump at y = 0 is predicted well. However, the

transition is gradual from negative to positive values for the curve without branch functions. Although the

63



transition takes place in a short interval, the method is not able to catch the discontinuity without branch

functions. This also results in the matrices [Gc'] and [Gef] in equation (4.17), on different sides of the crack

to be linearly dependent on each other (one is the negative of the other).

4.3.3 Multi-resolution Wavelet Functions for Modeling Cohesive Cracks

Wavelet bases, discussed in [20, 70], are L2(R) and generally have compact support. Only the local coeffi-

cients in wavelet approximations are affected by abrupt changes in the solution, such as for shock waves. This

localization property makes the wavelet basis a desirable tool for problems with a high solution gradients,

concentrations or even singularity. A brief introduction to wavelet basis functions is provided next.

Principles of wavelets and multi-resolution analysis

The construction of wavelet functions starts from a scaling or dilatation function O(x) and a set of related

coefficients {p(k)}kEz which satisfy the two-scale relation

O(x) = Zp(k)¢(2x - k) (4.27)
k

The scaling function has a compact support only if many coefficients p(k) are non-zero. Translations of the

scaling function q(x - k) form an unconditional basis of a subspace Vo C L2 (R.). Through a translation of

€ by a factor of 2' and dilation by a factor of k • 2' the unconditional basis is obtained for the subspace

V, C L 2(R.) as

On,k(X) = 2n/ 2 0(2 x - k) (4.28)

for a resolution level n. The scaling function 0 is defined as orthonormal if translations at the same level of

resolution satisfies the condition

f 0.,k(X)0n,I(x)dx = Jk,1 V n, k, 1 E Z (4.29)
06

64



Consequently, the best approximation of a function f(x) in the subspace Vn of L2 (7Z) is expressed as the

orthogonal projection of f on V, as:

Af(x) = k•On,akd5k(X), where a,k = f(X) On,k(x)dx (4.30)

Approximation of f(x), can be made at different resolution levels, and these approximations in subspaces

V.,-,, V, •+ Vn,), , follow the relation

{0}=V-c...CV-1 cVocCV1 C...cV,=L2 (R), where

lirn .. VII = U V,, is dense in L2 (R) and l n- f, Vn = {0} (4.31)

In the multi-resolution level transition, the information lost in the transition from level V,+l to level V,, is

characterized by an orthogonal complementary subspace W,,. A basis for the subspace W. can be obtained

is in the same manner as for scaling function, i.e. by dilating and translating the mother wavelet function

Vb(x) = Eq(k)0(2x - k) (4.32)
k

The subspaces spanned by the wavelet functions have the following essential properties:

(i) V,ý+i = V,. • W,. V, i.e. W,, is the orthogonal complement of V,• toV,+±;

(ii) For orthonormal bases, W,,, is orthogonal to W, 2 ;

(iii) For orthonormal bases, E' Wn = L 2 (R-) (4.33)

An approximation of the function f(x) at the n - th resolution level may be expressed as the orthogonal

projection of f on W, as

f • •D () = W -bn,kg kn,k(X), where b,,k = f(X)V9fk(x)dx (4.34)
k .-06
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Due to the orthonormality and multi-resolution properties of wavelet basis functions, higher level approximate

solutions can be generated from results of lower level solutions (see [20, 70]) by selective superposition of

complementary solutions. The use of adaptive enrichment is very attractive to those regions where a pre-

determined 'error or residual' tolerance is not met at the lower level.

Selection of the wavelet function

Various wavelet functions have been proposed in the literature for numerical solutions of ODEs and PDEs.

These functions have been incorporated in the method of weighted residuals like the Galerkin's method and

collocation method to solve problems with multi-level features in [41, 51, 80]. Among the large number of

wavelet functions proposed are the Haar function [43], the Meyer's wavelets [65], the Chui-Wang's B-spline

wavelets [21], etc. One of the most commonly used wavelet functions is Daubechies' compactly supported

orthonormal wavelets [25, 27, 41]. However, they are constructed through recursive algorithms and do not

have an explicit analytic expressions. This makes it is difficult to obtain their first and second derivatives,

which is a requirement in X-VCFEM for deriving stresses in terms of stress functions. Also the orthonormality

of the Daubechies wavelet cannot be transferred to the orthonormality for stresses by differentiation, and

hence they are not considered to be suitable for stress functions in X-VCFEM. Alternatively a family of

Gaussian functions, for which the first and second order derivatives are popular wavelets bases [14, 31, 57],

is implemented in the representation of X-VCFEM stress functions and stresses. The expressions for the

Gaussian function and its n - th order derivative are:

G(x) = e-( a) 2 /2 and T1 G,. - (-1)nd-(e(•)2/2) (4.35)
a,b (e- "d(35

The dilation and translation parameters a and b respectively can assume arbitrary values and can be changed

in a continuous fashion. The ability of wavelets to translate diminishes the need to re-define new elements

or remesh in conventional FEM solution of problems with moving boundaries. By changing translation

parameters, the multi-levels of wavelet bases can be made to closely follow a moving crack tip. Additionally

the dilation parameter with compact adjustable window support can be used to provide high refinement
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and resolution. Hence it is a convenient way of moving the stress concentrations using the multi-resolution

properties.

Multiresolution wavelet based stress functions for crack problems

The wavelet based stress function is constructed in a local orthogonal coordinate system , centered at

the crack tip. The , direction corresponds to the local tangent to the crack surface. The corresponding

stress function 4
'a,b,c,d in the Gaussian wavelet basis is given as:

'(,a,b,c,d(ý, 77) = e-(',)/2 e-(U )
2

/213a,b,cd (4.36)

where a, b, c, d are parameters that can take arbitrary continuous values. For implementation in multi-

resolution analysis involving discrete levels, the translation and dilation parameters should be expressed as

discrete multiples of some starting values. Consequently, these discrete values a,, b,, ck and d, are expressed

as:

am = a, •(tra)m-1

b,= 71 " b, "am

(4.37)

Ck =c, - (tr, )k-I

di =l.dl ck

Here (in, k) correspond to the levels and (n,l) correspond to the discrete translation of the bases in the

(ý, 77) directions respectively. The parameters (al, cl) are the initial dilating values at the first level m = 1,

while tra(< 1), tr,(< 1) are the transfer rates from one level to the next higher one. The parameters bi, di

represent the starting values of a step translation quantity at the m - th dilation level. The narrow (higher

level) wavelets are translated by small steps, whereas the wider (lower level) wavelets are translated by large

steps. Parameters tra = tr, = 1 and b, = d, = 0 imply no dilation and translation respectively. Parameters

co, co, and do are counterparts of a0 , ac, and bo in 77 direction. With the specific relations between dilation
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and translation parameters, the Gaussian wavelet enriched stress function in equation (4.36) becomes

a- e m k I~nnk ~(4.38)•mnk, I(ý, 77) = e-( -)/e- ( d-')2/2fmnk (.8

The family of wavelet enriched stress functions in equation (4.38) are not orthonormal, but they construct

a linearly independent basis [26]. This leads to robustness and high precision in the reconstruction of any

function f even with low level coefficients. The wavelet enriched stress function in X-VCFEM is thus written

as
7nn, " A- ,r In

SD 7) = 77) (4.39)

The corresponding stresses are:

82 -(_t I-bn)2 I2/2e-( j-ld,)2/2)

n n 2 82= ý 1

8
2

zAV
1  I.. - - a2 I -b 2/2e-( ck )/

I -
2

.2=l,n= -- 2 ,k= ll=O 8 2

821 M=1a172/ 2~ud n2

- i n, I ,nn,k,i

-m=1,n= -n, k=1,l1=O 0•2

(4.40)

The stress components in the global coordinate system are obtained by the transformation from the local

coordinate system as

wvlt
a2 ,P-It 92,P-Ito t

U 1  I = [QW]T [1 a Qa]j [Q ] (4.41)

a2¢•P-lt a2,t,-It
O 'x y O ry y O c a ? 0P -

where [Qw] is the transformation matrix from (7, 77) to (x, y):

[Wl= ay ax (4.42)

E8y Ox
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Figure 4.4 shows the support region for the wavelets enriched (Pv"t(j, 77) in a X-VC element. This region is

positioned symmetrically in the vicinity of evolving crack tips. The crosses (x) corresponds to the position

of each wavelet basis function b,,, d4 at a lower level, and the squares (0) correspond to additional locations

at a higher level in the multi-resolution algorithm. Only the points at the top half are shown in the figure

due to symmetry.

The method of implementation of the multi-resolution wavelet enriched stress functions in X-VCFEM is

described below.

1. For the starting level m = k = 1, 20 points marked by crosses (x) in figure 4.4 (a), are used to delineate

the wavelet enriched function D"WV"(ý, 77) in equation (4.39). This corresponds to m = 1, n = 5, k = 1

and 1 = 4.

2. With ensuing higher levels in the multi-resolution wavelet functions according to the equation (4.37),

higher level wavelet bases are added to the stress function as marked by squares (El) in figure 4.4

(b). The addition is done adaptively in accordance with error criteria discussed in section (4.3.4). A

refinement in the starting region of wavelet enrichment occurs in each added level, i.e. the window size

of additional wavelet basis functions is smaller than ones at a lower level. This allows a zoom in to

catch higher gradients that are missed at the coarser scales.

3. The process of successive multi-level refinement can continue till a predetermined error tolerance is

reached.

Remark: The line of the cohesive crack is likely to intersect the region of support of the wavelet bases func-

tions. It is important for the numerical algorithms to assure that wavelet functions based on one side of the

cohesive crack does not contribute to stresses on the other side. The influence of wavelet stress functions

should be cut off across this line of discontinuity by establishing a truncated effective support domain for the

wavelet function. This is accommodated by ignoring the contribution of quadrature points in the numerical

integration on the other side of the crack as detailed in section 4.5.3.
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In summary, the stresses in an element are computed by adding contributions from equations (4.21),

(4.23) and (4.40), to yield

1poly branch r WVlt

O'xx 1O'x O'xx O'XX

O'yy - O'yy +- 'yy "+I Oxyy

Or'y O'Xy O'X y O'Xy

Ua e . Je t e

[[p]poly [p]branch [pJwvl t] t = [Pe {13} (4.43)

/
3

m,n,k,L Je

4.3.4 Error measure for adaptive wavelet enrichment

The Euler equation (4.3) indicates that the error in the kinematic equation, which is satisfied in a weak

sense, may be primarily attributed to the lack of adequate resolution in the equilibrated stress fields. A

strain energy based element error measure, derived in [88], is extended to the present problem. Let a stress

field be enriched from a level n to level n + 1 by adding the wavelet-based enrichment stress a en, i.e.

0" evel(n+1) = 0 "level(n) ± 0.enr (4.44)

The corresponding percentage change in the strain energy (SE = f, aijSijklack, dQ), may be expressed as

S E ( o,'e vel:n+ 1) S E ( o, evel:n )
A SE - SE"Olcvel) -x 10 0% (4.45)

In view of the local properties of wavelets and stress concentration at crack tips, the strain energy in

equation (4.45) is calculated only in a small region around crack tip flnr. Adding levels is conditioned upon

the requirement that ASE is less than a preset tolerance, which in this work is chosen to be ..• 4%.
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4.4 Solution Method

Crack growth in multiply cracked materials is solved using an incremental approach, where a set of elemental

and global equations are solved in each increment for stresses and displacements.

1. Local equations for each element are obtained by substituting the stress interpolations of equation (4.43)

and boundary/crack face displacement interpolations of equation (4.15) in the element energy functional

equation (4.17) and setting its variation with respect to the stress coefficients A/3 to zero. This results in

the weak form of the element kinematic relations

r 1 qe 1

[H ],{,3 + AO3}e = [GeJ [GCrl - [GC rJ qCf ± Aq Cr (4.46)

2 2

qcr + Aqcr J
or in a condensed form

[H]!{0 + A/3}O = [G],{q + Aq}e *(4.47)

Since equation (4.47) is linear, the stress coefficients can be directly expressed in terms of the nodal displace-

ments, provided the element [H], matrix is invertible.

2. Subsequently, the weak forms of the global traction continuity conditions are solved by setting the

variation of the total domain energy functional with respect to the generalized displacement components to

zero. This results in the weak form of the traction reciprocity conditions

N 1lr2r T(3+Aj N1
E [Gcl [GCrJ - [GCF] {/3 + A E3}, = oh (4.48)
e=71
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or in a condensed form:

N NE[]T +I e N A{8re:[G (4.49)

e-I e=l

The forces at the crack surface are expressed in terms of the cohesive energy as

a 1 1 2 2
[coh (Ucr

icoh 2 Z d - dr. (4.50)r- aAq• 1 --rU•

Combining equations (4.47) and (4.49) and eliminating the stress coefficients {03 + A/3},, results in the

equation for solving the generalized displacements

N N

E{[GIT[H]I[G]e}{q + Aq} = -{Te.t}e (4.51)

Equation (4.51) is a nonlinear matrix equation system due to the cohesive laws. Consequently, a Newton-

Raphson iterative solver is invoked to solve for the increments of nodal displacements. The linearized form

of equation (4.51) for the j-th iteration is

__ - {[]T [H [ {dq}J=

e 'k e,.t}, _e 1[] q+

{ - Z{[GIT[H]-[G]}e{q+LAq} (4.52)
e= =1

which, in a condensed form is

[Kg9 'dqj = {R9 } - {Rnt (4.53)

A numerical problem associated with modeling cohesive crack growth is the occurrence of snap-back as is

shown in the macroscopic load-deformation behavior plot of figure 4.5.

This has been discussed for a three point bending solution in [66]. For a deformation controlled process
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with monotonically changing deformation, the solution ignores the reverse portion of the displacement BCD,

occurring with snap-back. The Newton-Raphson solver, where the loading process is monotonically controlled

by incremental deformation or load conditions, exhibits a discontinuous drop from point B to point D. It

is obvious, that this solver needs to be augmented with the capability to account for the part BCD, i.e. to

decrease both load and deformation with the growth and opening of the crack. The arc-length solver has

been proposed in [23, 24, 92[ as a method of overcoming this shortcoming by introducing an unknown loading

parameter (A + dA) to govern the load increments. Equation (4.53) is modified with this loading parameter

as

[Kg]JdqJ= (AJ + dAJ){Rg,} - fRi 1J (4.54)

where both dAj and dqj are unknowns, and dAj can be either positive or negative. The additional unknown

dAJ requires the solution of a constraint equation, written in terms of the magnitude of the deformation of

all the nodes on the crack surface as

1 2

((AUcr) 2 + (Au7) 2 ) = Al 2  (4.55)
iECrk

where Crk represents the set of all nodes on crack surfaces. A summary of the solution process is explained

in the flowchart of figure 4.6.

4.5 Aspects of Numerical Implementation

4.5.1 Adaptive criteria for cohesive crack growth

A. Direction of incremental cohesive crack advance: In linear elastic fracture mechanics, it is common to use

the "maximum hoop stress criterion" to determine the direction of crack propagation [9, 12]. Cracks are

assumed to propagate in a direction normal to the maximum hoop stress in this criterion. Since stresses at

crack tip are singular in LEFM, stress intensity factors are usually used to determine the direction of crack

propagation. This criterion is only suitable for K-dominated problems, where the size of the fracture process
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zone is small compared to the size of the specimen. A different criterion, based on the cohesive energy at

the crack tip is used in X-VCFEM. A relation between the cohesive energy € for complete decohesion and

the critical energy release rate G, has been established in [76] from the definition of the J-integral as:

GC = J =1 t dx, = td5 (4.56)

where R is the length of the cohesive zone. Consequently, the crack growth direction is estimated as that,

along which G, or equivalently the cohesive energy € is maximized for a given crack tip state of stress. The

cohesive energy OA at the crack tip A along any direction a can be expressed for an arbitrary separation

J(a) as:

O (A () =ia)6 ( tC . t (4.57)
( 1) A )A- )A

where t(a) = V/(tcoh)2 + /J-2(tt°h)2 is the magnitudes of the effective cohesive force. The corresponding

unit normal n and tangential t vectors along the direction a are expressed as

n = -sinai + cosaj , t = cosai + sinai (4.58)

The normal and tangential components of the cohesive traction force at an angle a may then be deduced as:

t•°h tX ty x ±yn.+ ayyny

-axxsin2a + UX cos2a + !or sin2a
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and hence the effective cohesive traction for direction a is

t(a) =

/(Uxxsin2oa - FXYsin2a + cyycos 2 a) 2 + 3- 2 (-- Ixsin2a + oxycos2a + I uyysin2a)2

(4.60)

The incremental direction of crack propagation is assumed as that which maximizes the cohesive energy at

A, according to the criterion:

&q5A(C) -0 and ( 2 OA (a) <0 (4.61)
O• 9a2

A combination of equations (4.57), (4.60) and (4.61), yield

OA (a) = (mai (C2ax - t(C)
2

) (a)

Th5
A _ e ___

amtt

at = [(KUsin 2a - O-XYsin2a + aoYcos2 a)(orxxsin2a - 2urcos2a - oryysin2a) +

,a-2(--laxxsin2a + aUxcos2a ±+ 1a sin2a)(-orxxcos2a - 2irxsin2a + oryycos2a)]/
2 2

( (crxsin 2 a - cr1ysin2 a + ruycos 2 a)2 + 6-2(- 1r sin2a + UX ,cos2a + 1uYysin2a)2)°.

=0 (b)

(92 OA 6, 22
32 = [(o7Ysin2a - uxxsin a - Ourcos 2a)(aoxsin2a - 2a 1xcos2a - ayysin2a)O(9a 0-ma.T

2 1 1 2c 1 si2
+0 -2 - u(2 sin2a - o!cos2a - Ior.sin2a)2 (-uxxcos2a - 2urxsin2a + acos2a)]

< 0 (c)

(4.62)

Equation (4.62)b results from the fact that t cannot be equal to zero for decohesion to initiate and hence

the necessary condition evolves from its derivative. The direction of crack propagation a, is obtained as the

solution of equation (4.62)b as

75



I arctan
VCe FEM = / (4.63)

arctan \

The optimal angle oXVGFEM is chosen as the one that satisfies the condition in equation (4.62)c. The

corresponding angle given by the maximum hoop stress criterion in LEFM is expressed in terms of the stress

intensity factors K1 , KII as:

aLEFM =2arctan-1(rIi ± v-Ki M2+ 8)(4.64)

where the sign is chosen to make the hoop stress positive. The first of equation (4.63), which is the only

choice for f= - 1, exactly matches the angle given by the maximum hoop stress criterion (4.64). For the pure

sliding problem shown in figure 4.7, ac predicted by the equation (4.64) is 70.50, while that by X-VCFEM

for cohesive stresses is 68.20.

B. Length of the incremental cohesive crack advance: Upon establishing the direction of incremental cohe-

sive crack growth a., the length of cohesive zone advance (AI) should be estimated in the crack evolution

scheme. The criterion used is that the cohesive energy goes zero at the end of the new segment as shown in

figure 4.8(a). To achieve this, the cohesive energy at two points A (present crack tip) and B (close to A in

the direction of crack propagation) are evaluated by substituting the stresses in equation (4.62)a. The tip of

the cohesive zone is obtained from the linear extrapolation of this line to yield zero cohesive energy. From

figure 4.8 (a), the increment of cohesive crack length is defined as:

A[= cA JABI (4.65)
CA - PB
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C. Cracks crossing the interelement boundaries and merging with each other: Crack advance from one Voronoi

cell element to the next is conducted in X-VCFEM using an algorithm depicted in figure 4.8(b). A contin-

uous tracking method is implemented to monitor if a cohesive surface has reached or gone past an element

boundary. In this method, the intersection of the crack surface and an element boundary is obtained by

solving the equation system

x - xi Y - Yi X - xn Y - Yn-z (4.66)

Xi+j - Xi Yi+1 - Yi Xn+l - Xn Yn+l - Yn

where (xi, yi) represents the tip of the cohesive crack line for the ith increment, and (x•, y,) is the position

of the nth node on the element boundary. If the intersection point is outside of the cohesive line or the

element boundary, no intersection is assumed. Once a cohesive crack has reached its intersection with the

boundary, a new node pair (n, n2 ) is introduced on the element boundary at this point. The node pair

belongs to the intersection of the element boundary and the cohesive crack, i.e. nln2 E aQ1 n Fc.. The

crack is subsequently advanced to the next element following the usual procedure outlined before.

Another condition that is considered in this work is the merger of multiple cracks as shown in figure 4.8(c)

for two cohesive cracks. The algorithm for crack merging is an extension of the intersection algorithm,

discussed above. At the end of every increment, all the cracks that have propagated in that increment are

recorded. Subsequently, the intersection of the last incremental segment of the cohesive crack with those of all

neighboring cracks, that belong to either the same element or neighboring elements, is checked using equation

(4.66). Once the intersection of two crack segments is ascertained, a three-node junction (rnl, m2, M 3 ), as

shown in figure 4.8(c), is inserted at the point of intersection. The contribution of the junctions nodes e.g.

(mi, M2 ) to the load vector in the assembled matrix equation, requires special treatment. For each of these

nodes, contributions of integrals from adjoining crack segments belonging to two different cohesive cracks,

are summed.
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4.5.2 Evaluation of stress intensity factors

The stress intensity factors and J- integral are evaluated in the post-processing phase of the computations.

From linear fracture mechanics, the relation between J- integral, stresses and stress intensity factors are

given as

J = (-0aikfik~lj - a-juj,1)njds = + KK 1  (4.67)
Jr 2  E* E*

where E* = E (Young's modulus) for plane stress, E* E for plane strain, and v is the Poisson's

ratio. In displacement based FEM [66, 30], the contour integral is converted into a domain integral to

improve the accuracy of the stress intensity factors, since the stresses are more accurate in the interior of an

element. However in X-VCFEM, stresses on the contour and the interior are equally accurate due to stress

interpolation and the contour integral can provide similar accuracy as the domain integral. A method to

extract the stress intensity factors K1 and K 1, from the J-integral, proposed in Yau [114], is implemented

in X-VCFEM. Displacement fields are not interpolated in the interior of the Voronoi cell element, and hence

the term u2,1 in equation (4.67) requires a special evaluation method.

1. Compute ell, C22 , and 612 at a series of points (xi, yi, i = 1...N), in a small shadowed region around

the integration point (xo,yo) in figure 4.8(d). The displacement gradient ul,1 is calculated from Ell.

2. For evaluating u2,1 displacements ul and U2 at any point (xi, yi) are interpolated using polynomial

functions,

u1 (xi,yi) = ao ÷+axi+a 2 yi-+-a3x± +"

u2 (xi,yi) = bo + blxi + b2yi ± b3 x2 +... (4.68)

where ao, a,, ., am and b0 , bi, ... , bM are unknown coefficients. To constrain the rigid body motion,

coefficients are evaluated from displacement values at two points on boundaries.

3. Displacement gradient expressions, Ul,(Xi, yi), u2 ,2 (xi, Y), u12 (Xi, yi) and u22,1(Xi, yi) are obtained by
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taking derivatives of the expressions in equation (4.68). Strain expressions in terms of the unknown

coefficients are computed from these derivatives. At each point (xi, yi), the strains can also be computed

from the known stresses and the compliance tensor, i.e. {E} = [S][P] {/3}. The unknown coefficients a 0 ,

a,, ... , am and bo, bl, -.., bM in equation (4.68) are estimated by solving a least square minimization

problem for the strains. Subsequently the displacement gradient u2,1 is determined at the integration

point (x0, YO).

4.5.3 Numerical integration schemes for [H] and [G] matrices

Integration of [H] matrix:

Numerical integration over each element is conducted by the Gaussian quadrature method to form the matrix

[H] in equation (4.18). In this method, each Voronoi cell element is recursively subdivided into triangular

subdomains, on which, integration points are generated for the Gaussian quadrature. The steps involved are

discussed below.

1. For each Voronoi cell element shown in figure 4.9, the centroid 0 is first generated. The first set of

triangular subdomains is created by joining each of the vertices of the cell e.g. (A, B, C, D, E,

F) with the centroid 0.

2. Each triangle is further subdivided into two triangles if:

Area of triangle TOLUe (4.69)

Area of Voronoi cell element

For the subdomain triangle BCO shown in figure 4.9, two triangles are created by bisecting the longest

edge BC at 0' and joining it with the opposite vertex O.These new smaller triangles are again checked

against the tolerance condition and further dissection is executed if necessary. Numerical integration

in each triangular subdomain is done using 13 Gauss points.

3. For the region containing the crack tip shown in figure 4.9, a smaller value of TOLarea is chosen in

comparison with other regions. This facilitates a higher density of integration points in regions of high
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stress gradients. The tolerance in an element is consequently adjusted according to the distance of the

center of the triangular subdomain from the crack tip, i.e.

TOLarea _TOLa ± - TOLa) , dtri (4.70)
L

where L is a scaling parameter defined in subsection (4.3.1), dtri is the distance of the crack tip from

the subdomain and TOL"'x, TOL in are assumed tolerances. In this work the tolerances are chosen

as TOLax = 10% and TOLWJn 1%.
area area

4. The intersection of the support of wavelet functions with the cohesive crack line call for a truncated

support. This is done by eliminating the contribution of quadrature points that lie on the other side

of crack face from the wavelet center. A visibility criterion introduced in [10] provides an easy way to

accommodate this discontinuity in the construction of truncated support. In this method, the cracks

are considered to be opaque when generating valid numerical integration regions. A ray is emitted

from the center W of a wavelet basis function in an arbitrary direction as shown in figure 4.4. If it

encounters an internal crack, the ray is terminated. All quadrature points lying in the dark shadow

region on the other side of the crack CC' are suppressed during numerical integration of this wavelet

basis.

Integration of the [G] matrices:

1 2
In equation (4.18), the matrices [Gcr] and [Gc"] are numerically integrated over the crack surfaces and the

matrix [G'] over the element boundary. All numerical integrations on the element boundary and crack

surfaces are executed using the Gaussian quadrature method. The number of integration points Nit on

each boundary/crack-face segment depends on the distance dside between its center and the crack tip, and

is chosen from the condition

9 dside > O0L
Nint= (4.71)

16 dside < OiL
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where L is the scaling parameter.

4.5.4 Invertibility of the [H] matrix

A nonsingular or invertible [H] matrix necessitates the linear independence of the columns of the [P] matrix.

For pure polynomial expansions of the stress functions, this condition is naturally attained. However when

adding the other terms, some of the terms in the branch and wavelet functions may have linear dependence

on the polynomial terms. In X-VCFEM, the rank of the [P] matrix is first determined from the diagonal

matrix resulting from a Cholesky factorization of the square matrix

[H*] = k[]pT[PI]dQ (4.72)

Nearly dependent columns of [P) will result in very small pivots during Cholesky factorization. The cor-

responding branch and wavelet function terms are dropped from the stress function to prevent numerical

inaccuracies in inverting [H].

4.5.5 Elimination of element rigid body modes

X-VCFEM uses a stress-based formulation with independent representation of displacement fields on the

element and crack boundaries. In general, the nodes of the crack face are not topologically connected to

the element boundary nodes. However it is important that all nodes in the element possess the same rigid

body modes. The rigid body modes of the element boundary displacements {q'} are directly constrained

in the solution process through prescribed displacement boundary conditions. However, it is necessary to

1 2
connect these with rigid-body modes for the crack face displacement fields {qcr} and {qcr}. Singular value

decomposition or SVD has been discussed in [88] as an effective method for identifying and constraining
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rigid body modes at interfaces inside the Voronoi cell elements. The matrix product may be expressed as

[[c] [Gr] r [U] [AI][V] {q`} [U][IA] {4l
[1 2

= [qI- CcI j } (4.73)

[U] and [V] are orthonormal matrices obtained by SVD of [[Glcr] -[Gcr]]. [A] is a rectangular matrix

with nonnegative values on the diagonal. The zero or singular (very small values in numerical computations)

values in [A] corresponds to either trivial solutions or rigid body modes of the displacement solution. For

accurate displacements, elements in {elrl} corresponding to small or zero eigen-values in [A] are eliminated.

4.6 Numerical Examples

The numerical examples solved, are divided into four categories. In the first set of examples, the convergence

of X-VCFEM enriched by multi-resolution wavelet functions is demonstrated for static cracks by comparison

with theoretical predictions and results available in the literature. The second set of examples show the

effectiveness of X-VCFEM in modeling the propagation of multiple cohesive cracks. The third set of examples

is intended to investigate the effect of cohesive parameters on crack growth. The final set of examples looks

into the growth of multiple pre-existing cracks to comprehend the effect of morphology, e.g. distribution,

orientation etc..

4.6.1 Convergence tests for X-VCFEM for static cracks

Effects of translation and dilation parameters

Figure 4.10(a) shows a center cracked plate of width 2w=4cm and length b=12cm with a crack length

of 2a=l.6cm. The plate is loaded in simple tension with a constant remote load of 0 u 5 MPa. The

material parameters are: Young's modulus E = 1 MPa and Poisson ratio v = 0.3. Due to problem

symmetry, only the right half of the plate is modeled with one X-VCFEM element, as shown in figure

82



4.10(b). Symmetry conditions are imposed on the left edge. The crack face is modeled using 10 node-pairs

and the element boundary consists of 22 segments. The stress function used in this example consists of

the three parts discussed in section 4.3. For the polynomial function, the order of interpolation in equation

(4.19) corresponds to p,, = 13 and q, = 13 for a total of 102 terms. For the branch function in equation

(4.23) consists of only 1 term with s, = 0 and t,, = 0 . The wavelet functions are changed from a lower level

to a higher level using the adaptation criterion discussed in section 4.3.4. Similar parameters are assumed

for the fi and r7 directions, i.e., a, = cl, tra= tr, and b, = d, in equation (4.37). The starting values of

the parameters for the lower level (m = k = 1) are: -2 < n < 3, 0 < 1 < 1, and a, = c, = 0.1. The

result of X-VCFEM for this problem is plotted in terms of the stress ory along the crack face (y = 0)

as a function of the distance from the center of the crack in figure 4.11. The figure 4.11(a) corresponds to

the stresses by varying the translation parameter bl, while figure 4.11(b) is for the variation of the dilation

parameter ai. From figure 4.11(a) it is evident that a smaller bl make the stress concentration at the crack

tip higher. However, very small b, •< 0.001 (no translation) leads to linear dependence of the columns of

the [P] matrix generated from the wavelet basis functions, and should be avoided. Figure 4.11(b) shows

that smaller ai results in faster convergence to higher crack tip stress concentration. However, very small

values of a, can also lead to oscillatory stresses. On the other hand, large a, values (rz 0.15) shifts the

stress peak. The optimal selection of these parameters is therefore very important. This is obtained through

the multi-resolution construction of bases, discuss next. The multi-resolution wavelet bases are significantly

more effective in simulating crack problems. Table 4.7 shows the effect of the dilation transfer rate tra = trc

on the stress intensity factors for variation in the translation parameters b, = dj. Other parameters in the

simulation are a, = cl = 0.1, m,- = k,, = 3, n,. = 6, and I, = 2. The values tra = tr, = 1 imply no dilation.

As tra approaches 1, the different levels functions become more and more dependent on each other. From

the table, the minimum error is achieved for b, = 0.1 and tra = tr, = 0.5 or 0.6.

Convergence with multi-resolution wavelet bases

The example in section 4.6.1 is considered again for studying the solution convergence behavior with multi-

resolution wavelet functions. The four sets of parameters represent four instances of multi-resolution stress
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function enrichment. The first case consists of only polynomial and branch functions for the stress inter-

polation, for which the details are provided in section 4.6.1. Cases 2, 3, 4, and 5, introduce different levels

of the wavelet basis functions. The wavelet parameters common to these four cases are: nn = 6, 1n = 2,

al = cl = b I = d, = 0.1, and tra= trc = 0.5. The parameters corresponding to the levels of the multi-

resolution enrichment (rnn = k,,) are listed in table 4.7.

The mode I stress intensity factor is calculated for all the five cases and is normalized with respect to the

analytical prediction Kre1 by linear elastic fracture mechanics (LEFM), reported in [98]. The second row of

table 4.7 compares this value for the different cases. Without the wavelet bases (case 1), the solution is 16%

higher than the theoretical value. Cases 2-5 results demonstrate that the wavelet basis effectively reduces

the error with increasing resolution level (m,,). The X-VCFEM generated stress ay, at y = 0 is plotted in

figure 4.12 for cases 1-4. Without the wavelet enrichment, the stress concentration at the crack tip (x = 0.8)

is completely misrepresented. The stress peaks are represented with increasing accuracy with additional

levels of multi-resolution wavelet functions. The strain energy error in equation (4.45) is also calculated for

the cases 2-5 and tabulated in table 4.7. The error rapidly decreases with increasing wavelet enrichment,

confirming the fast convergence rate of the multi-resolution algorithm. However, the stress intensity factor

K 1 is calculated from a contour that is away from the crack tip. The stresses on this contour are much

more stabilized and additional wavelet bases do not affect these stresses considerably. Hence, the error in

KI is not significantly affected by their addition. From the above convergence tests, the optimal parameters

for stress function representations in X-VCFEM are chosen to be p,, = q, = 13, sn = tn O, 0nn - 6,

m, m , = k, = 4, ai = cl = b, = d, = 0.1 and tra = tr, = 0.5. These are retained for all subsequent

simulations. X-VCFEM simulations of the cracked plate are further conducted for different crack lengths,

to study the effect of this length on the solution convergence. The specific dimensions in figure 4.10(a)

are 2w=2 cm, b=6 cm, while the crack length 2a is varied. The plate is loaded under remote tension of

o, = 40Pa. X-VCFEM solution of K 1 for various values of a/w are plotted in figure 4.13 and compared

with the theoretical predictions of [98]. X-VCFEM predictions match the theoretical results extremely well.
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4.6.2 Efficiency and Accuracy of X-VCFEM

Prior to studying the effect of cohesive parameters and multi-crack distributions, the accuracy and efficiency

of X-VCFE model are validated by several numerical examples.

Comparing efficiency with ABAQUS for a simple crack propagation problem

A plate with a pre-existing edge crack under remote tension load is solved for plane strain by X-VCFEM

and ABAQUS as shown in figure 4.14(a). The material Young's modulus E = 70, OOOMPa, and Poisson

ratio v = 0.33. A bilinear cohesive zone model discussed in [58] is used to describe the crack growth and

the cohesive model parameters are ama, = 5 MPa, 6, 1 X 10-6 mm, Je = 5 x 10-3 mm and 3 = 0.707.

The entire domain is represented by a single element in X-VCFEM, consisting of 142 nodes for displacement

interpolation. The adaptive enrichment of wavelet bases is determined by the strain energy error in equation

(4.45). As shown in previous section, the optimal parameters for stress function representations in X-VCFEM

are chosen to be p, = q,= 13, s,, =t = 0, n,. = 8, 1, = 1, rn, =k = 4, al = cl =b =dl = 0.1 and

tra= tr, = 0.5, which means that stress function interpolations consist of 102 terms of polynomial functions,

1 term in the branch function, and 128 terms in the wavelet function representation. These are retained for

all subsequent simulations. It is assumed that the crack propagates horizontally due to symmetry, and hence

the modules for determining incremental crack direction in section 4.5 is switched off for this problem. A

special UEL subroutine is developed in ABAQUS for incorporating the cohesive model at a given interfaces.

A total of 12840 4-node 2D element and 77 cohesive elements are used in ABAQUS. Figure 4.14(b) shows

the load a-vertical displacement u. plot at point A. The two codes yield very similar results, an attestation

of X-VCFEM accuracy. However, the X-VCFEM simulation takes only 1.6 minutes on a single CPU in the

Pentium 4 cluster with 2.4Ghz Intel P4 Xeon processors, as opposed to 13.9 minutes by the ABAQUS run on

the same machine. Thus, even for this simple example, a tenfold advantage in computing speed is achieved

by X-VCFEM. It is expected that this factor will increase considerably with increasing complexity, such as

more cracks.
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A classical problem on dynamic crack propagation

This numerical example is based on Kalthoff's well known experiment on dynamic crack propagation in a

impact loaded prenotched plate, that has been the subject of many studies [55, 56, 85]. These studies suggest

that a crack, subjected to a tension-compression load as shown in figure 4.15(a), propagates at an angle of

approximately 60' - 700 with respect to the initial notch in the plate. The present X-VCFEM does not

explicitly incorporate inertia terms, and hence a quasi-static crack propagation problem is simulated instead

of the dynamic test. The configuration in figure 4.15(a), shows that the experimental projectile motion is

replaced by the traction boundary conditions in the simulation under plane strain conditions. A small initial

crack length of a=0.02m is chosen to mitigate the effect of the constrained right hand boundary on crack

propagation. Material properties for this problem are: Young's modulus E = 207 GPa and Poisson ratio

v = 0.3 and cohesive zone model parameters in equation (4.12) are: orma, = 0.1 MPa, 6e = 1 x 10- 6 m, and

6= 0. The entire domain is represented by a single element in X-VCFEM, consisting of 132 nodal degrees

of freedom. The results of the X-VCFEM simulation is shown in figure 4.15. From figure 4.15(a) the initial

crack growth angle is around 70', which is corroborated by brittle failure experiments at very low velocities

[32]. Subsequently, the crack propagation takes place within the envelope of 600 - 700, which is in agreement

with studies in [55, 56, 85]. The dynamic conditions, as well as boundary constraints are responsible for the

small difference between X-VCFEM results and those in [85]. Volume-averaged or macroscopic shear stress-

shear strain behavior for this problem is plotted in figure 4.15(b). The volume averaging of the local stress

and strain fields over the entire microscopic domain Q is performed as

j~t)= (j (xkt)dV

ij = - •ii (xkt)dV- aij(t). (4.74)

where xk and t are the spatial coordinates and time (cumulative increments in these problems) respectively,

and

aij(t) = - Q ([ui(t)]nj + [uj(t)]ni)d•Q (4.75)
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oeij(t) represents the effective strain field caused by the possible displacement jump at the crack. It is

calculated along the crack path rr with [u2(t)] denoting the displacement jump.

Crack propagation in sheared plate with a central crack

This example is based on a classical problem of a single crack propagation in a large plate with a central crack.

The plate is subjected to a far field shear load. The problem was experimentally studied by Erdogan and Sih

[32] and an optical micrograph of their cracked specimen is shown in figure 4.16(a). The specimen material in

their experiment were assumed to be homogeneous, isotropic and linearly elastic and the crack was assumed

to be brittle. A single element of dimension 10 m x 8 m in X-VCFEM is used to simulate this experiment as

shown in figure 4.16(b). The initial crack length is a=1.6 m. The material parameters are: Young's modulus

E = 100 GPa, Poisson ratio v = 0.3 and the cohesive law parameters are: Umax = 0.1 MPa, /3 = 1, and

-, = 1 x 10-7 M. The shear stress applied on the top and bottom surfaces, is varied from 0 to 0.041 GPa with

plane stress assumptions. As shown in figure 4.16(b), the crack path predicted by X-VCFEM compares well

with the observations in [32]. Figure 4.16(c) shows the growth of the crack opening displacement components

at the right tip A. The entire computational process took 20 minutes on a single CPU in the Pentium 4

cluster with 2.4Ghz intel P4 Xeon processors.

Crack propagation in three-point bending specimen

Two numerical examples are considered for this specimen. In the first example, symmetric mode I crack

propagation in a three-point bending test, as shown in figure 4.17, is modeled. Plane stress conditions are

assumed in the simulation. This problem of cohesive crack propagation has been studied by Carpinteri [17]

using node release technique and by Mops and Belytschko [66] using the extended FEM or XFEM. The

geometrical dimensions for the specimen in figure 4.17 are b= 0.15 m,l=4b, t(specimen thickness)= b,a=0,

and d=0.001 rn. The material properties are: Young's modulus E = 36,500 MPa, Poisson ratio v = 0.1,

and the cohesive parameters are creax = 3.19 MPa, and /3 = 0. The X-VCFEM solution is compared

with that in [66] through the load-deflection curve of figure 4.18. The cohesive displacement parameters are

6, = 3.134796 x 10' rn and 3• = 6.26959 x 10- 6 nm for figures 4.18(a) and 4.18(b) respectively. A sharper
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snap-back is seen for the latter case. Excellent match is observed between the X-VCFEM and XFEM results

The second example shows a mixed-mode cohesive crack propagation in a three-point bend test due to an

unsymmetrically positioned initial crack. The problem, shown in figure 4.19(a), has been studied by Mariani

and Perego[64] using XFEM under plane stress conditions. The initial crack position is determined by the

offset ratio a, defined as the ratio of the distance of the initial crack from the mid-span cross-section to half

of the beam span. The material Young's modulus E = 31370 MPa, and Poisson ratio v = 0.2. The cohesive

model parameters are amao. = 4.4 MPa, Je = 0.07719298 mm and 03 = 1.0. Once again, the entire domain

is represented by a single element in X-VCEFM with 154 nodal degrees of freedom. Figure 4.19(b) shows

the load-deflection curve for two values of the offset parameter, i.e. a = 0.5 and a = 0.25. The initial elastic

response in the load P-displacement u curve is stiffer and also the peak load is higher for higher values of

a. The load-displacement response exhibits softening in the later stages of crack propagation due to the

significantly evolved crack. The path of crack propagation for the two cases are shown in figures 4.19(c) and

(d). The cracks move towards the point of applied load and align themselves perpendicular to the edge of

the specimen.Excellent agreement is obtained between the results by X-VCFEM and in [64].

4.6.3 Mesh independence of crack propagation with X-VCFEM

A panel with domain 5 cm x 3 cm containing two initial cracks is remotely loaded in tension as shown in

figure 4.20(a). The problem has been solved by Sharma et. al. [95] using the element free Galerkin meshless

method. For X-VCFEM solution, the domain is meshed into two elements with three different topologies

shown in figure 4.20. Plane stress conditions are again assumed. A total of 11 increments is used to model

the entire crack propagation process. The material parameters are: Young's modulus E = 207 GPa and

Poisson ratio v = 0.3 and cohesive zone parameters are: Umax = 0.1 MPa, 6 e = 1 x 10- 6 rcm, and 0 = 1.

The three figures 4.20(b,c,d) show no mesh dependence of the X-VCFEM predictions and the comparison

with results in [95] is excellent.
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4.6.4 Effect of cohesive parameters on crack evolution

This example is intended to investigate the effect of cohesive parameters on crack growth. Cohesive zone

model parameters, e.g. Urnax and 6, in equation (4.12), can significantly affect the propagation and overall

behavior of a cracking material. The effects of these cohesive parameters are studied for crack propagation

in a sheared plate with a central crack subjected to a far field shear load. This classical problem was

experimentally studied by Erdogan and Sih [32] and an optical micrograph of their cracked specimen is shown

in figure 4.21(a). The specimen material in their experiment was assumed to be homogeneous, isotropic and

linearly elastic and the crack was assumed to be brittle. A single element of dimension 10 m x 8 m in X-

VCFEM is used to simulate this experiment as shown in figure 4.21(b). The initial crack length is 1o-1.6 m.

The material parameters are: Young's modulus E = 100 GPa, Poisson ratio v = 0.3. Five different sets of

cohesive parameters, illustrated in figure 4.21(b) are considered for this example. These are

"* A: cmx,=3.0 MPa, 6,=3.0 e-4m, 8 = 1.0

"* B: max=6.0 MPa, 56=1.5 e-4m, /3 = 1.0

"* C: u,,=x3.0 MPa, 6,=6.0 e-4m, / = 1.0

"* D: ca,,=6.0 MPa, 6,=3.0 e-4m, 3 ý 1.0

"* E: ua,,,=1.5 MPa, 6,=6.0 e-4m, 3 = 1.0

As shown in figure 4.21(b), all the cases correspond to the same cohesive energy. The load is applied by

controlling the opening of crack propagation through fixed values of the increment Al in equation (4.55).

Further a uniform shear load per unit length ro is applied on the top and bottom surfaces as shown in figure

4.21(c). In each increment, the applied load is scaled by the arc-length parameter \ of equation (4.54), to

yield an equilibriated applied load corresponding to a prescribed crack propagation length. The crack path

for all the different cohesive parameters predicted by X-VCFEM are very similar and compare well with

experimental observations in [32]. However a considerable dependence on cohesive parameters is seen in the
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shear-crack length response, demonstrated in figure 4.21(d), where the normalized crack length is defined as

The current crack length (4.76)
The initial crack length

This points to the fact that the rate of propagation, and not the direction, is dependent on the parameters

for this problem. For the cases with larger peak traction cases: B and D, higher applied loads are needed

for causing similar crack growths as for cases with lower peak traction: A and C. Comparison of the results

for cases B and D, show that a smaller 5e (case B) results in quicker reduction of the local cohesive traction.

This makes the overall load for the case B to increase slower than that for case D with a higher 6e- The case

E consistent with the trends exhibited by the other load cases. Although, the simulation results show that

both amar and 6, affect the crack growth, comparison of cases A, B, C with D shows that the crack growth

is more sensitive to omax than to 5 . The results also imply that the cohesive energy, or effectively the energy

release rate GC, does not alone determine the properties of crack propagation. The individual parameters,

affecting the shape of the cohesive law, play an important role in predicting the growth characteristics. These

effects are also tested for multiple crack growth in the next set of examples.

4.6.5 Propagation of multiple pre-existing cracks

The final set of examples looks into the growth of multiple pre-existing cracks to comprehend the effect of

morphology, e.g. distribution, orientation etc..

Firstly, a plate with five randomly located cracks is simulated under a tensile loading as shown in figure

4.22(a). The plate has dimensions 0.6 m x 0.4 m; material parameters: Young's modulus E = 105 MPa

and Poisson ratio v = 0.3; and cohesive parameters: a,,ax = 0.1 MPa, 0 = 1, and 6, = 1 x 10- 5 cm. Figure

4.22(b) shows the final positions of the cracks that have grown with the loading. The cracks propagate across

element boundaries and are attracted to each other in certain regions till they nearly merge.

A plate with 28 randomly located and oriented cracks is simulated under a tensile loading. Figures 4.23(a)

and (b) show the two microstructures with different crack distributions. For the microstructure 1, all the

cracks of equal length are oriented horizontally and their distribution is random. The microstructure 2 has
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cracks of random length and orientation. In addition, it contains a cluster of 8 cracks in a otherwise random

distribution as shown in figure 4.23(b). The plate is of dimension 0.1 m x 0.1 m, and the material parameters

are: Young's modulus E = 104 MPa and Poisson ratio v = 0.3. To understand the effect of cohesive

parameters on crack propagation, two different sets of cohesive parameters are considered. They are:

CP-1: Umar=l.0 MPa, t5=l.0 e-5m, /6 = 0.707

CP-2: oa....=2.0 MPa, 5,=0.5 e-5m, 3 = 0.707

A uniform tension load per unit length a is applied on the top and bottom surfaces as shown in figure

4.23(a,b). In each increment, the applied load is scaled by the arc-length parameter A of equation (4.54), to

yield an equilibriated applied load corresponding to a prescribed crack opening deformation.

Figures 4.24(a,b) and (c,d) show the contour plots of the microstructural stress o,, together with evolved

position of the cracks at the final stage of loading, for the two sets of microstructures and cohesive parameter

respectively. The growth pattern of each crack can be observed by comparing with its initial configuration

in figures 4.23(a) and (b). The cracks propagate across element boundaries, interact with each other and in

some cases, they merge. The relation of the propagation of multiple cracks to the morphology and cohesive

parameters is in general complicated. However, several observations can be made based on the results of the

simulation by this model.

" Larger stress concentrations develop at tips of cracks that are nearly perpendicular to the direction of

loading. Consequently, this subset of cracks grow more easily than others that are more aligned with

the loading direction. From figure 4.24(b) and (d), it can be seen that some cracks that are nearly

parallel to the load direction never propagate.

"* Stress concentrations are higher at tips of longer cracks. The reason is stress concentrations at crack

tips come from the external load, which cannot be handled by the weak crack. Longer cracks lead to

more external load concentrating to tips. This is verified by results shown in figure 4.24(b) and (d),

where longer cracks are easier to propagate than shorter ones.

"* Irrespective of the initial orientation, the evolved crack path tends to align in a direction perpendicular

to the applied load direction. This correspond to an optimal direction for releasing the cohesive energy.
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This observation is dominant, when the influence of nearby cracks on the local stress field is small.

The local stress field for this phenomenon is mainly governed by the influence of applied load on this

single crack.

"* Cracks are attracted towards weak surfaces, such as other cracks or voids and prefer to propagate in

those directions. This may be attributed to the fact that the cohesive energy in the direction of these

weaker surfaces with lower (or zero) tractions is naturally lower in comparison with other directions.

"* Figures 4.24(b) and (d) show that the longest crack does not necessarily evolve from a cluster. Not all

cracks in a cluster grow considerably. This is somewhat in contrast to observations made with particle

reinforced composites, where almost always clusters cause a local stress concentration. The interaction

between neighboring cracks contributes to the enhancement or mitigation of stresses, depending on

their orientations and length. This dictates their propagation, and just being in a cluster does not

guarantee significant growth.

"* The different cohesive parameters show very little difference in the final configuration and hence the

propagation direction. However, the rate of crack growth varies considerably with these parameters as

seen in the crack length-macroscopic strain plot of figure 4.25

Figure 4.26 shows the macroscopic stress-strain response for the two microstructures and cohesive pa-

rameters. Even before the cracks propagate (corresponding to the change in slope), the stiffness of the

microstructure 2 is higher than that of microstructure 1 due to a higher level of effective damage caused by

crack lengths and more importantly orientations. Orientations perpendicular to the load direction causes a

larger reduction in stiffness in comparison with other directions. With additional loading, the overall damage

caused by the growth of cracks is also higher for the microstructure 1. This is seen by the lower values of the

macroscopic stress for this case. The effect of the cohesive parameters on the stress-strain response is quite

pronounced. The maximum macroscopic stress for both microstructures increases significantly for higher

values of Umax, even though the cohesive energy is the same for the two cohesive models. This is caused by

a slowdown in the growth rate of the cracks with overall deformation.
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4.7 Concluding Remarks

The extended Voronoi cell finite element model is developed in this chapter to predict initiation and growth

of damage by crack propagation in brittle matrix. The cracks are modeled by a linear cohesive zone model

and their incremental directions and growth lengths are determined in terms of the cohesive energy near the

crack tip. Important enhancements are made to the element to allow stress discontinuities across the cohesive

crack and to accurately depict the crack tip stress concentrations. These features are accommodated through

the incorporation of (a) branch functions in conjunction with level set methods across crack contours, and

(b) adaptive multi-resolution wavelet functions in the vicinity of the crack tip. Several problems are solved

and compared with existing solutions in the literature for validation of the X-VCFEM algorithms, both with

respect to macroscopic (load-deformation behavior) and microscopic (crack path). The X-VCFEM results

show excellent accuracy in their comparison with analytical and other numerical solutions. Also compari-

son with ABAQUS shows the efficiency of X-VCFEM. Numerical simulations are conducted with different

anax and J, to understand the effect of cohesive parameters on the crack propagation. It's observed that in

addition to the total cohesive energy, the individual parameters have effects on crack growth. The effect of

geometrical information of multiple pre-existing cracks, including the lengths, positions and orientations of

cracks, on their propagation is studied by simulating a plate with 28 randomly located and oriented cracks.

Simulation results show that the crack with a longer length and nearly perpendicular to load direction is

easier to propagation than other cracks. Cracks propagation direction is dependent on the local stress field,

which is managed by both the external load and nearby material phases, such as other cracks in a cluster.

This research reveals the significance of analyzing large regions of the microstructure and proves the effec-

tiveness of the X-VCFEM. The simulation results based on X-VCFEM could also provide positive feedback

for design modification.

Based on the study on interfacial debonding and cohesive matrix cracking in composites, the interaction

of the two damage phenomena is studied in the next chapter, where the X-VCFEM is improved and a

criterion for assessing the direction of damage development is proposed.
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tra 0.6 0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.4
b, 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2

K 1 fKrej 1.019 1.014 1.040 1.017 1.014 1.027 1.020 1.020 1.035

Table 4.1: Normalized stress intensity factors (KI/Kre1 ) for different values of tra and b, in the multi-
resolution wavelet representation.

Case 1 Case 2 Case 3 Case 4 Case 5
m,= kn 0 1 2 3 4
KI/Kre, 1.1642 1.0361 1.0208 1.0062 1.0020

ASE 96.45% 45.91% 7.06% 3.01%

Table 4.2: Errors with varying enrichment order of multi-resolution wavelet functions for the different cases.
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Figure 4.1: (a) A mesh of Voronoi cell elements, each containing a single pre-existing crack, (b) a typical
Voronoi cell element showing different topological features and loads.
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Figure 4.2: Normal and tangential traction-separation behavior for the linear cohesive zone model.
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Figure 4.3: (a) A schematic diagram of a crack surface showing parameters related to the distance functions;

(b) depiction of the branched stress function 4 branch near a crack for s = 0, t = 0.
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(b)

Figure 4.4: Distribution of multi-resolution wavelet bases around a crack tip: (a) Crosses (x) refer to the
location of the origin of the basis vectors at a lower level corresponding to dilation parameters (tra and tr,)
and (b) adaptively upgraded to higher level wavelet bases with the addition of the next level of bases at
locations indicated by the (0l).
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Figure 4.5: Load-deflection behavior in a 3-point bend test with a crack, showing the softening snap back
phenomenon.
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Figure 4.6: A flowchart of the solution method.
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Figure 4.7: The stress o,, at x -0.3 for a double cantilever beam to demonstrate the effect of the
branched stress function.
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Figure 4.8: Algorithms for incremental propagation of cohesive cracks: (a) for direction and incremental
length, (b) a cohesive crack going through the inter-element boundary, (c) for merger with other cracks and
(d) for evaluation of J- integral.
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Figure 4.9: Subdivision of the Voronoi cell element for Gaussian quadrature, with a higher density of
integration points near the crack tip.
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Figure 4.10: (a) A center cracked plate loaded in tension, (b) a single X-VCFEM element with prescribed
boundary conditions
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Figure 4.11: X-VCFEM generated stress o,, at y = 0 for the cracked plate, to examine the effect of
parameters in the wavelet basis: (a) dilation parameters and (b) translation parameters.
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Figure 4.12: X-VCFEM generated stress ou, at y = 0 for different enrichment orders of the wavelet basis
functions.
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Figure 4.13: Stress intensity factors for various values of a/w.
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Figure 4.14: (a) A plate with an edge crack under remote tension load, (b) comparison of load-deformation
curves by X-VCFEM and ABAQUS.
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Figure 4.15: (a) Prediction of the crack path by X-VCFEM for the Kalthoff experiment, (b) the macroscopic
stress-strain response.
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Figure 4.16: (a) Optical micrograph showing the path of cracking in a plate with a central crack sub-
jected to far-field shear [32], (b) corresponding crack crack path generated by X-VCFEM, (c) crack opening
displacement at the tip A.
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Figure 4.17: A three-point symmetric bending specimen.
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Figure 4.18: Comparison of normalized load-deflection curves for the three-point bending beam: (a) ,e =
3.134796 x 10- m and (b) 6, = 6.26959 x 10'6 m.
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Figure 4.19: (a) A three-point bending specimen with an unsymmetric initial crack, (b) comparison of
load-deflection curves from X-VCFEM and literature [641 , (c) and (d) comparison of the crack paths by
X-VCFEM with that in [64] for a = 0.25 and a = 0.5, respectively.
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Figure 4.20: A plate with two cracks in arbitrary locations modeled by X-VCFEM using elements of different
topologies located cracks, (b,c and d) show crack path at the end of the loading for the different elements
and also a comparison with [95].
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Figure 4.21: (a) Optical micrograph showing the path of cracking in a plate with a central crack subjected to
far-field shear [32], (b) 5 different sets of cohesive parameters for X-VCFEM simulations, (c) corresponding
crack path generated by X-VCFEM, (d) comparison of the growth of cracks for different cases.
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Figure 4.22: (a) X-VCFEM mesh for a plate with five randomly located cracks, (b) crack paths at the end

of loading
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(a) (b)

Figure 4.23: Crack propagation in two square regions containing 28 cracks by X-VCFEM: (a) domain with
horizontal cracks of equal length and random distribution, (b) domain with random orientation, length and
distribution of cracks but containing a cluster.
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Figure 4.24: Crack propagation in two square regions containing 28 cracks by X-VCFEM: (a,b) contour plots
of a0. (MPa) with cohesive parameters CP-I for the domains in figure 23 (a) and (b), (c,d) contour plots of
o. (MPa) with cohesive parameters CP-2 for the domains in figure 23 (a) and (b)
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Figure 4.25: Comparison of the growth of crack A in microstructure 1 with different cohesive parameters.
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Figure 4.26: Macroscopic stress-strain response for different microstructural morphologies and cohesive pa-
rameters.
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Chapter 5

Extended Voronoi Cell Finite Element

for Modeling Interfacial Debonding

with Matrix Cohesive Cracking in

Fiber Reinforced Composites

5.1 Introduction

Interfacial debonding and cohesive cracks propagation in brittle matrix are two important damage phenomena

in fiber-matrix composites. Experiments show that the two damage phenomena appear in the same material,

where the failure often starts from the interface between fiber and matrix, and is subsequently advanced into

matrix. Researches regarding a crack meeting a bimaterial interface to either deflect along the interface or

penetrate into the next layer were made in [3, 45, 46, 63], where the criterion of deflection versus penetration

was established based on the energy release rate and fracture energy. However, the present research is aimed

at only elastic cases, which requires that the fracture process zone at the crack tip is small compared to the
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size of the crack and the size of the specimen. In chapters 3 and 4, cohesive zone models are introduced into

VCFEM to study damage of interface and matrix, where the stress field in composites are described by a

set of specifical functions accurately. And the effect of cohesive parameters and morphological distributions

are studied as important factors to the damage process. All work in the two chapters are theoretical and

computational preparation for solving interfacial debonding problems coupled with matrix cracking.

In this chapter, a criterion based on cohesive zone models is proposed for assessing the direction of damage

development. The improved X-VCFEM is developed for modeling both the growth of interfacial debonding

and the propagation of multiple cohesive cracks in the brittle matrix of fiber-reinforced composites. The

mechanics theories and numerical algorithm in previous chapters are organized as an organic whole, not just

a simple superposition. It begins with the X-VCFEM formulation and numerical implementation, followed

by the numerical example showing the effectiveness of this model and the interaction of interface and crack

propagation.

5.2 Extended Voronoi cell FEM formulation for composites with

interfacial debonding and matrix cracking

The Voronoi cell finite element mesh for a microstructure with both debonded interfaces and cohesive cracks

is shown in figure 5.1(a), where the region is divided into an unstructured finite element mesh of arbitrary

Voronoi cells. A typical Voronoi cell element Q, is shown in figure 5.1 (b). Each VC element is composed

of the matrix phase (fQm), the inclusion phase(Qlc), the interface (QiR,), and cracks (fcr), such that Qe =

Q, Uc Q,.U i U Qc, where interface and cracks are consider as zero thickness regions. The element outer

boundary consists of the prescribed displacement boundary (Fum), prescribed traction boundary (Ptm) and

the inter-element boundary (F1,), so i.e. i9Q, = Fm U £tm U rm. Compatible displacement conditions apply

on &o9Q. aQr has an outward normal nC (=nm), while n' is the outward normal to 0(9e. In order to describe

debonding with progressing deformation through decohesion, the interface is lined with a set of node-pairs

with nodes belonging to the matrix interface (&Qf') and inclusion interface (aQc) respectively. The traction

tc"" between node-pairs on the crack surface are modeled by the cohesive zone traction-separation law. The
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behaviors of cohesive cracks in the brittle matrix are described by a similar method, where nodes in node-pairs

1 2
are arranged at different sides of a crack (For and r,,). In the incremental assumed stress hybrid X-VCFEM

formulation, the complementary energy functional for each element is expressed in terms of increments of

stress and displacement fields as:

11e(aT, AO, u, Au) =-fAB(u
m , Aom )dfl - k AB(a,', AojC)dfn

+ j (,-m + A. t m ) -. (ue + Aue)oaQ

-J• (i + A) . (um + Au m )dr

+ (um + Aa m ) n. (um + Au m )dao

f2 2
- f2 (ur + Am). ncr. (ucr + Au')d•cr

J~n

+ (,u,+Au--u') -Au+)
- Ian2g'/8fc2 k- m U-) T' d(um  uc)doa

1 1 2 2•F •Ucr+hcr-cr•'cr 1 2

,T"- d(uT - u CV)drcr (5.1)
frr Ucr-- u~r

Here B is the complementary energy density and the superscripts m and c correspond to variables asso-

ciated with the matrix and inclusion phases. um and uc are the equilibrated stress fields, em and 6c the

1 2
corresponding strain fields in different phases of each Voronoi element. Also, ue, ur, uc, ucr and ufr are

1 2
the kinematically admissible displacement fields on , 8Q , , Pcr and Po, respectively. The prefix A

corresponds to increments. The term in the box in equation (5.1) provide the work done by the interfacial

tractions T' = Tmnm + Tintm due to interfacial separation (ur - uc), where T,, and Ttm are the normal

and tangential components that are described by cohesive laws at the interface. Similarly, the last term

provide the work done by the cohesive tractions T' = TCnc" + Ttrtcr due to displacement separation

1 2

(ucr - ur) along the crack, where T,7' and Ttr are the normal and tangential components of the cohesive
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force. The total energy for the entire composite domain is obtained by adding the energy functionals for N

elements as
N

H = EHrH (5.2)
e=1

5.2.1 General element assumptions and weak form

In the absence of body forces, two dimensional stress fields satisfying equilibrium relations can be generated

from the Airy's stress function 4(x,y). In the incremental formulation, stress increments in matrix and

inclusion are obtained from derivatives of the stress functions A4)'(x, y) and A4c(x, y) as:

/ A c = a2 A p =P-( ,Y ] A ~ }
k Au N= I 2~y•,'_.___

I = 8
2

A4ým

XyJ/ aray/

AcrU, a2A4•c [PC(Xy)I{A61c} (5.3)

Aacr J a 2A4pC
Xy /-axay

where {AO'n} and {A3c} are the column of unknown stress increment coefficients. Convergence properties

and efficiency of X-VCFEM depend on the choice of D'I. These functions should adequately account for the

geometry and location of the heterogeneity in the element, so stress functions for matrix are decomposed

into (a) a purely polynomial function (b) a reciprocal function r, (c) a branch function 4,raneh

and (d) wavelet functions Po ('m 4 7
,oy + 'Cc + 'D-anch ±+ 4 .1)" The selection of stress functions are

discussed in chapters 3 and 4 detailed. Inclusion stress functions are admitted as polynomial function 4poly

((Dc = 4 1coPy). Compatible displacement fields satisfying inter-element continuity on the element boundary

afQ and intra-element continuity on both the interface aQW/Of2' and the crack face 1cr are generated by
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interpolation of nodal displacements as:

{Aue} - [Le]{/qe} on 0802

{Au} = [Lm]{Aqm } on affC

{Au'} = [LCJ{Aqc} on i9Q'c

111 1

{Aucr = [Lcr]{Aqcr} on pct,

2 2 2 2
{Aucr} = [Lcr]{Aqc} on r, (5.4)

1 2

The interpolation matrices [Le], [Lm ], [LC], [Ler], [LcJ for the nodal displacements on the respective bound-

aries are constructed using standard linear or hierarchical shape functions. Since nodes on the inter-

face and crack surfaces are always belonging to some node-pair, the interpolation matrices are chosen as

1 2
[Lm ] = [LU] and [Lc] = [Lcr].

Substituting the interpolations of stress and displacement fields from equations (5.3) and (5.4) into equation

(5.1) results in the matrix form of the element complimentary energy

fl, 1 {)3- + A,9m} T [Hr]{)3m + A'3_} 1 12{c + A).} T [Hc]{wc + A/c}He- 2

+ {)3_ + Aom}T[G]e{qe + Aqe} _ 1,3m + Asm }T[G]m {q m + Aq m }

+ {oc + Aj3c}T[G]c{qc + AqC} + {f)3 + A,3m}T[GcrI]q Aq1 1

2 2 2

_ {om ±+ Ai.m}Tc[Gcr]{qc + A q"} - {t} T {qe + Aq'}

f (U
m

+U-'AC

- fnI8/8 (u +-u-) T m . d(u m - ui)daQ

1 1 2 2
f Ju-+Auc,-u_-Auer 1 2

-1 2 T . d(ucr - ucr)drc, (5.5)
Jr cr-Ucr
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where

[Ht m ] = j [Pm]T[Sm][pmjdQ, [Hc'] -j [pc]T[scI[PC]dQc

[Gel = jo n [pmIT[nnel[Ll]da [G-] = [pmlT[nfm[Lrn]dafQ

[[[Pc]T Gn [d [p[T cr]

[GC= = j p[[n]TLcdfn r][crd1
[' r] = []Trj 'I

[GC] = [pnT[nll[Lcr]dFrr {} = [L,] T {• + Af}drt, (5.6)

Construction of appropriate stress functions with optimally high resolution is necessary for accurately de-

picting high stress gradients near the crack tip.

5.2.2 Solution Method

Crack growth in multiply cracked materials is solved using an incremental approach, where a set of elemental

and global equations are solved in each increment for stresses and displacements.

1. Local equations for each element are obtained by setting the variation of equation (5.5) with respect

to the stress coefficients A/9m and A/3' to zero. This results in the weak form of the element kinematic

relations

[Hm ] [01 1 /3 + + A,' m

[0] [HCJ ( c + A3c

q1e -+ Aqe

[1 G] [ Aq m

[Gel -[Gm] [0] [Ccr] -[Ccr] qc + Aqc (5.7)

[01 [0] [Gcl [0] [0] 1 1
qCr ± A~qcr

2 2qcr + Aqcr

or in a condensed form

[H],{/3 + A03} = [G]j{q + Aq}je (5.8)
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Since equation (5.8) is linear, the stress coefficients can be directly expressed in terms of the nodal displace-

ments, provided the element [H] matrix is invertible.

2. Subsequently, the weak forms of the global traction continuity conditions are solved by setting the varia-

tion of the total domain energy functional with respect to the generalized displacement components to zero.

This results in the weak form of the traction reciprocity conditions

t

1 T fri n

N [G el -[Gin] [0] [G r] -[G ] OM +AO M N fin (5.9)
E= 1: -- oh

[0] [0] [Gc] [0] [01 3oC + A1c C=,
-corf~h

or in a condensed form:

N N

[G •N V (5.10)
e=1 e=1

The forces at the interface and crack surface are expressed in terms based on the cohesive energy as

fcoh = np/n aAq m  T' d(um 
- uc)- d

-J [Lm]T{Tm(um + Aum - uc - Auc)}daQ (5.11)

C 221

fLoh = J , 2 T cr d(ucr - ucr) dFcrr., aAqr U-_uc

f 1 1 1 2 2S[LCr]T{wcr(uC± Aur - ur - Au•)}dr• (5.12)
1r
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Combining equations (5.8) and (5.10) and eliminating the stress coefficients {f3+AI3} e, results in the equation

for solving the generalized displacements

N N
-{[G]T[Hj-I[Gce}{q+Aq} = -{Text}e (5.13)

e=l e=1

Equation (5.13) is a nonlinear matrix equation system due to the cohesive laws. Consequently, a Newton-

Raphson iterative solver is invoked to solve for the increments of nodal displacements. The linearized form

of equation (5.13) for the j-th iteration is

{, 0 E [G{T = [GIIe {dq}I =

ýC~l e=l{ {~x~e-~{G T [J'[G]}eq+A} (5.14)

which, in a condensed form is

[Kg]dq - g }j (5.15)

Many numerical examples in Chapter 3 and 4 prove that only a Newton-Raphson iterative solver cannot

obtain the entire failure solution for the problems with damage, especially when a snap-back appears in the

load-deformation curve.

According to the arc-length method proposed in [23, 24, 92], an unknown loading parameter (A + dA) is

introduced to govern the load increments. Equation (5.15) is modified with this loading parameter as

[K9]Jdq'= (A' + dAJ)(R,:t} - {R? 1 (5.16)

where both dA4 and dqj are unknowns, and dAy can be either positive or negative. The orthogonality

condition (3.27) is chosen to be the constraint equation required by the additional unknown dVj.
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5.2.3 Stability conditions

Following the stability conditions derived for displacement-based and stress-based finite element approxima-

tions in [5, 15, 111], the stability conditions of the stress-displacement field variational problem in X-VCFEM

are stated in section 4.2.3. They are positive definite [H'] and [HC], unique stress interpolation functions,

and non-zero stress parameters for all non-rigid body displacement fields. The two conditions can be sat-

isfied by implementing numerical methods in section 4.5. And the third one is accomplished by choosing

n,,> n+n +n ~*2•- 3and np, >nc_3.nq -nq 2 ndnq nq

5.3 Aspects of Numerical Implementation

5.3.1 Adaptive criteria for cohesive crack growth

A. The criterion for the incremental cohesive crack advance into matrix:

The static deflection/penetration behavior at an interface has been the subject of numerical research efforts

in the past years and many significant results for various kinds of materials have been obtained([3, 45,

46, 63]). The fracture toughness ratio of the interface and the matrix material has been identified as the

most important parameter governing the crack deflection/penetration phenomenon. Predicting crack growth

requires to calculate the energy release rate, G, and a knowledge of the surface fracture energy, G,. In this

chapter, we denote by GC and GC the energy release rate and the critical energy release rate for the case of

growth along interfaces, and by G' and G' the corresponding quantities for penetration into matrix.

As seen in previous results, stress concentration always appears in the matrices around fibers, which results

in cohesive interfaces between fiber and matrix becoming weak and even debonded. Simultaneously, damage

at the interface results in larger concentrated stress fields in matrix. Once the stress in matrix reaches some

critical value, the material at this matrix point might become softening and damage propagates into matrix

from the interface. All points with critical stresses are regarded as the candidate damage position, where the

criterion is necessary for selecting the crack growth direction, along the interface or branching into matrix.

The candidate positions are usually chosen from the Gaussian integration points on the interface. In the

program, 18 Gaussian integration points are distributed between any two consecutive nodes at the interface.
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At the candidate points, the criterion for assessing the crack penetrating into matrix is defined as

Gi/G' > G'I/G' (5.17)

In this thesis, the energy release rate is calculated based on cohesive zone models, which are shown in figure

5.2. The bilinear model in figure 5.2 (a) is for describing the damage at interface, and the linear model in

figure 5.2 (b) is for the matrix cracking. The areas of the shadow regions express the current energy release

rates G' and G'. According to the relation between the cohesive energy 0 for complete decohesion and the

critical energy release rate GC, in equation (4.56), the critical release rates for interface and matrix are

•' = -Ia' 3a' and Gm -= 3n (5.18)

2 max e 2 maxe

In order to obtain the energy release rate Gm, the effective cohesive traction t is calculated according to

stresses (arxX, aYY and ao) at every candidate point. Recalling equations (4.59-4.63) in Chapter 4, effective

cohesive traction t(a,), the cohesive energy O(°,) and the energy release rate Gm are obtained

t(ce) =

(Oxxsin 2a - ~aYsin2o + orycos2c\)2 + f 2-(-1arsin2a + ax•Ycos 2a + 1 rysin2a) 22 2

(5.19)

G'= 0a) T om2- a,2) (5.20)
2max

where cz, is the angle maximizing the cohesive energy.

The current energy release rates for interface, GC, is obtained

ar~n.a6V'/ 3 < 6,
C' =(5.21)

2/ (ima.~I - 3 > 12

129



According to equations (5.18, 5.20, 5.21) and inequality (5.17), the damage propagation directions are

determined at the candidate points.

B. Direction and length of the incremental cohesive crack advance:

Recalling results in chapter 4, the direction of matrix cracking ac is obtained at the damage onset points as

a~c=

arctan ( . a ,+ •5.22))2+4 )

k 2• ](5.22)

2(0-3 - 1)a+x ~(~4~0 2
4u, .(40-

4
-4,6-

2
+2)a- a, y (2032 - 1(,._,

a rcta n ( 2 0 2 ' _ a - a + ,, x V

The sign in equation (5.22) is chosen as the one that maximizes the cohesive energy ¢c by satisfying the

condition in equation (4.62) c.

Upon establishing the direction of incremental cohesive crack growth a,, the length of cohesive zone advance

(Al) should be estimated in the crack evolution scheme according to the same algorithm shown in chapter

4 as:

Al[= 1A JABI, (5.23)
OA - OB

where B is a point close to A in the direction of crack propagation.

5.3.2 Generation of [Gc]

Once damage is driven from interface into matrix, two node-pairs (mi, n1 ) and (in 2 , n2), shown in figure

5.3, are added at the interface, where nodes m, and M 2 are at the matrix side and nodes nj and n 2 are

at the inclusion side. The separation between m, and m 2 describes the displacement discontinuity at the

crack surface. Since crack doesn't propagates into the inclusion, the node-pair (n1 , n 2 ) merges by sharing

the same displacement. This can be implemented at assembling matrix [Gc]. In matrix [Gc], the elements in

column DOFn2 are added to the corresponding elements in column DOFnl, and the entire column DOFn2
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is assigned zero. The process is shown in equation (5.24) as

DOF,1  DOFn2

, ... # ... =>

0 flfjC Xflqc

DOF Pl DOF, 2

*+# 0. ..

r # 0 ... (5.24)

0f3c XlqC

5.4 Numerical Example

An example with a square microstructure containing a single circular fiber with a debonding interface is

considered to check the effectiveness of X-VCFEM and study the interaction between the interface and

matrix cohesive cracking. The geometrical dimensions for the specimen in figure 5.4(a) are a= 20 mm,

r= 5 mm. The material parameters for matrix and fiber are: Young's modulus Em = 72 GPa, Ef =

450 GPa, and Poisson ratio vm = 0.32, v1 = 0.17, where subscript ()m and (')f denote matrix and

fiber respectively. The interface uses the bilinear cohesive zone model with the properties Onaxi = 0.04 GPa,

6, = 0.001mm, 6' = 0.02mm,,/3 ' = 0.707. The linear cohesive zone model is used to describe matrix cracking

with parameters: a',, = 0.05 GPa, 6' = 0.002mm, and 6 m = 1. The cohesive parameters are chosen

to make arm' > o,, so that the damage starts from interface instead of matrix. Under plane strain

conditions, the displacement boundary conditions are shown in figure 5.4(a). The whole microstructure is

modeled with one X-VCFEM element, consisting of 16 nodes on the cell boundary and 20 node pairs on the

interface for displacement interpolation. Before damage propagates into matrix, the stress functions in this

example consist of 102 terms of polynomial functions and 45 terms of reciprocal functions. After the cracks

advance into matrix, one branch function and 16 wavelet functions are added into the stress interpolation for

131



each crack. Figures 5.4(b) shows the contour plots of the microstructural stress av, together with evolved

position of the cracks at the final stage of loading. The growth pattern of each crack can be observed by

comparing with its initial configuration in figures 5.4(a), where there is no matrix cracks.

The relation of the propagation of multiple cracks to the interface debonding is in general complicated.

However, several observations can be made based on the results of the simulation by this model.

"* As shown in figures 5.4(b), the lower stress at point A implies that interface there becomes weak even

debonded, which results in the load can not be transfered into the fiber at this position effectively. The

positions with concentrated stress bifurcate from point A and move to left and right sides respectively

along the interface, which might drive the damage into matrix from the interface. The same thing

happens at the bottom point of the circular fiber.

"* Due to symmetry, four cracks propagate into matrix from the interface. Largest stresses appear at tips

of cracks and the stress in fiber is released. In this example, since cracks result in larger concentrated

stress than interfaces, cracks propagation in matrix becomes the key damage phenomenon in following

failure process.

"* The evolved crack path tends to align in a direction perpendicular to the applied load direction, which

agrees with the observation in chapter 4.

5.5 Concluding Remarks

The extended Voronoi cell finite element model is improved in this chapter to predict the damage advanc-

ing into matrix and study the interaction between interfacial debonding and matrix cracking. Polynomial

functions, reciprocal functions, branch functions and wavelet functions are made to the element stress in-

terpolations to accurately depict the stress discontinuities and concentrations at interfaces and cracks. The

damage in interface and matrix are modeled by cohesive models. A criterion for assessing the crack pen-

etrating into matrix is proposed, which is based on the energy release rate and cohesive energy. A square

specimen containing a single circular fiber with a debonding interface is considered to check the effectiveness

of X-VCFEM and the criterion.
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The damage analysis in fiber-reinforced composites is in general complicated. X-VCFEM is easy to be ex-

tended to study effects of material properties and geometric characterization, such as clustering, alignment,

fiber shape, relative sizes etc., which are critical to the failure process in the microstructure. This will be

explored in the future work.
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Figure 5.1: (a) Voronoi mesh for composite microstructure with interface debonding and matrix cracking,

(b) a typical Voronoi cell element with interface and crack.
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Figure 5.2: Cohesive zone models for calculating energy release rates: (a) the bilinear law for interface
debonding and (b) the linear law for matrix cracking.
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Figure 5.3: Node pairs (ni, im) and (n2, M2) for describing damage advancing into matrix.
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Figure 5.4: (a) A square microstructure containing a single circular fiber, (b) contour plot for au, (GPa)
with four cohesive cracks propagated from the interface.
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Chapter 6

Concurrent Multi-level Model for

Damage Evolution in

Microstructurally Debonding

Composites

6.1 Introduction

Analysis of composite materials with microstructural heterogeneities is conventionally done with macroscopic

properties obtained by homogenizing response functions in the representative volume element (RVE) from

microscopic analyses at smaller length scales. While these "bottom-up" homogenization models are efficient

and can reasonably predict macroscopic or averaged behavior, such as stiffness or strength, they have limited

predictive capabilities with problems involving localization, failure or instability. Assumptions of macroscopic

uniformity and RVE periodicity, the two basic requirements of homogenization, break down under these

circumstances. The uniformity assumption ceases to hold in critical regions of high local solution gradients,
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such as near free edges, interfaces, material discontinuities or evolving damage. RVE periodicity, on the other

hand, is unrealistic for non-uniform microstructures, e.g. in the presence of clustering of heterogeneities or

microscopic damage. Even with a uniform phase distribution in the microstructure, the evolution of localized

stresses, strains or damage path can violate the periodicity conditions. Problems like this have been effectively

tackled by multi-scale modeling methods e.g. in [81, 33, 50, 75, 74, 89, 83, 82, 101, 120, 99]. Multi-scale

analyses methods can be broadly classified into two classes. The first is known as "hierarchical models"

[33, 50, 101, 99] in which information is passed from lower to higher scales, usually in the form of material

properties. The hierarchical homogenization models assume periodic representative volume elements (RVE)

in the microstructure and uniformity of macroscopic field variables. The second class, known as "concurrent

methods" [75, 74, 90, 83, 82, 120], implement sub-structuring and simultaneously solve different models at

regions with different resolutions or scales.

The two-way coupling of scales enabled in the concurrent methods is suitable for problems involving

localization, damage and failure. Macroscopic analysis, using bottom-up homogenization in regions of rel-

atively benign deformation, enhances the efficiency of the computational analysis. As a matter of fact, it

would be impossible to analyze large structural regions without the advantage of a continuum model based

macroscopic analysis. On the other hand, the top-down localization process cascading down to the mi-

crostructure in critical regions of localized damage or instability for pure microscopic analysis, is necessary

for accurately predicting the damage path. These microscopic computations, depicting the real microstruc-

ture are often complex and computationally prohibitive. Hence, a concurrent setting makes such analyses

feasible, provided the "zoom-in" regions are kept to a minimum. The adaptive multi-level models, promoted

in [75, 74, 90, 83, 82, 120], are attempts to achieve this objective, with the adaptivity motivated from phys-

ical and mathematical perspectives. However, there is a paucity of such studies in the literature involving

material nonlinearity and evolving microstructural damage. In their previous studies, Ghosh and coworkers

have proposed adaptive multi-level analysis using the microstructural Voronoi cell FEM model for modeling

elastic-plastic composites with particle cracking and porosities in [89], and for elastic composites with free

edges and stress singularities in [83, 82].

In a preceding paper [84], the authors have derived and computationally modeled an anisotropic con-
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tinuum damage mechanics (CDM) model for unidirectional fiber-reinforced composites undergoing interfa-

cial debonding from by using homogenization theory. The CDM model homogenizes the damage incurred

through initiation and growth of interfacial debonding in a microstructural RVE with nonuniform distribu-

tion of fibers. Additionally, arbitrary loading conditions are also effectively handled by this model. The

present paper uses this CDM model of [841 in an adaptive concurrent multi-level computational model to

analyze multi-scale evolution of damage. Damage by fiber-matrix interface debonding, is explicitly modeled

over extended microstructural regions at critical locations [37, 58]. The adaptive model addresses issues of

efficiency and accuracy through considerations of physically-based modeling errors.

The adaptive multi-level model consists of three levels of hierarchy viz. level-C, level-1 and level-2), which

evolve in sequence. The continuum damage model developed in [84] is used for level-O computations. The

level-1 domain is used as a 'swing region' to establish criteria for switching from macroscopic to microscopic

calculations. Physical criteria involving variables at the macroscopic and microstructural RVE levels, trigger

switching from pure macroscopic to pure microscopic calculations, i.e. the level - 0 --* level - 1 --* level - 2.

A transition layer is placed between the level - 1 and microscopic level - 2 domains for smooth transition

from one scale to the next. All computations in the composite microstructure with explicit representations

of the fiber and matrix phases are done with the Voronoi cell finite element model or VCFEM [37, 58].

In VCFEM, debonding at the fiber-matrix interface is achieved by a layer of cohesive springs [76]. Two

numerical examples are solved in this paper to examine the effectiveness of the multi-level computational

model in multi-scale damage analysis. The first example considers a small region of a fiber matrix composite

microstructure for comparison with an explicit micromechanics model. The second set of problems models

a double lap bonded composite joint for demonstrating its capability in handling large structural problems.

6.2 Levels in the Multi-scale Computational Model

The multi-phase composite computational domain Qhet is adaptively decomposed into a set of non-intersecting

open subdomains, belonging to levels-C, -1 and -2 with different algorithmic treatments, i.e. Qhet

010O U Q2 11 U 0L12 U Q'tr. The different levels of computational hierarchy, in the order of sequence of emer-
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gence, are depicted in figure (6.1) and discussed briefly here.

LLEVEL 2

- periodic boundaries --

(a) (b)

Figure 6.1: Schematic of the two-way coupled concurrent multi-level model: (a) a representative volume
element (RVE) for a non-uniformly distributed composite microstructure generated by tessellating the lo-
cal microstructure, (b) the top-down multi-level model showing components of concurrent coupling, viz.
continuum level-O, level-I of asymptotic homogenization and level-2 of micromechanical analysis.

6.2.1 Computational Subdomain Level-0 (Qh0 )

This level corresponds to regions where continuum constitutive laws can be used in macroscopic analysis.

Macroscopic field variables like stresses and strains in fh are relatively uniform and there is no strong non-

periodicity in the microstructure. Hence, microscopic 'statistical' periodicity in the RVE is assumed to be

valid in this level. Scale effects are negligible and it is possible to derive effective constitutive relations by

volume averaging the RIVE response with imposed periodicity conditions, in the limit that the RIVE tends to

zero volume. This is generally the starting level in the multi-scale analysis model, as long as RIVE's can be

identified for the computational domain. Macroscopic analysis with the continuum constitutive models in

levcl-O, reduce the computing effort by several orders of magnitude in comparison with models that require

141



complete microscopic analysis

For undamaged microstructures with linear elastic or elastic-plastic phases, homogenized anisotropic

constitutive laws have been developed by the authors in [90, 361. In the case of microstructures with randomly

evolving microcracks causing diffused damage, the homogenized material behavior is best represented by a

continuum damage mechanics (CDM) law. An anisotropic CDM model with a fourth order damage tensor

has been developed from rigorous micromechanical analyses in [84]. The general form of CDM models

[54] introduce a fictitious effective stress ¾ij acting on an effective resisting area (A), which is caused by

reduction of the original resisting area A due to material degradation from the presence of microcracks and

stress concentration in the vicinity of cracks. In [84], the effective stress Eij is related to the actual Cauchy

stress Eii through the fourth order damage effect tensor Mijkt as

Eij = Mijkt(D)Ekt (6.1)

where Mijkl is a function of the fourth order damage tensor D(= Dijklei ® ej ® ek ® el). The hypothesis of

equivalent elastic energy is used to evaluate Mijk, and hence establish a relation between the damaged and

undamaged stiffnesses [22, 19, 118]. Equivalence is established by equating the elastic energy in the damaged

state to that in a hypothetical undamaged state as

W(E,,D) = 1Eij(Eijk1(D))-r1k1 = W(:,O) = -tij(Eijkl)-lk (6.2)

where F = ijej ® ej, EPkM is the elastic stiffness tensor in the undamaged state and Eijkl (D) is the stiffness

in a damaged state. From equations 6.1 and 6.2, the relation between the damaged and undamaged stiffnesses

is established as

Eijkl = (Mpqij) 1Epqrs (Mrskl)- 1  (6.3)

With an appropriate assumption of a function for Mijkl, equation (6.3) can be used to formulate a damage

evolution model using micromechanics and homogenization. In [84], a damage evolution surface is introduced
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to delineate the interface between damaged and undamaged domains in the strain e-space as

1
F = •eijPijktekl - I(QWd) = 0 (6.4)

Here Wd corresponds to the dissipation of the strain energy density due to stiffness degradation for constant

strain without an external work supply. Also called the degrading dissipation energy (see [49]), it is an

internal variable denoting the current state of damage, and is expressed as:

Wd = J 1 eijekIdEijkl (6.5)

Pijkl is a symmetric negative-definite fourth order tensor that will be expressed as a function of the strain

tensor eij, a is a scaling parameter and r, is a function of Wd. Assuming associativity rule in the stiffness

space, the evolution of the fourth order secant stiffness is obtained as

= jk OF = AP=ijkl (6.6)E~i~kI A&( eij'--ekl )

Pijkl (e) corresponds to the direction of the rate of stiffness degradation tensor Eijkl. For a composite material

with interfacial debonding, the direction of rate of stiffness degradation varies with increasing damage and

hence Pijk1 (e) does not remain a constant throughout the loading process. The model requires the evaluation

of r., a and Pijkl in equation (6.4). These are determined from the results of micromechanical simulations of

a RVE with periodic boundary conditions. The function 1i(Wd) is evaluated for a reference loading path and

all other strain paths are scaled with respect to this reference. Upon determination of the maximum value

Wd for a reference loading condition, the value of a for any strain path can be obtained by simple scaling.

To account for the variation of Pijkl(e), any macroscopic strain evolution path is discretized into a finite set

of points. The values of Pijkl are explicitly evaluated at these points from RVE based simulations. Values

of Pijkl for any arbitrary macroscopic strain value can then be determined by interpolating between nodal

values using shape functions of a 3D linear hexahedral element. The details of the parameter evaluation

process in the macroscopic CDM model are discussed in [84].
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6.2.2 Computational Subdomain Level-1 (Q11)

Level-i is an intermediate computational subdomain, introduced as a swing region for establishing criteria

for switching from macroscopic level-O regions to level-2 regions of pure microscopic computations. The

switching criteria are based on analyses of the macroscopic problem, as well as of the microstructural RVE

problem. The asymptotic homogenization theory is used for this level to decouple the set of governing

equations into a set of (i) homogenized equations representing the macroscopic problem corresponding to a

length scale x, and (ii) microscopic equations for the RVE Y(x), represented by a length scale y. Details of

the decoupled macro- and micro-equations are given in the appendix section 6.7.1.

Gradients of important field variables are evaluated from macroscopic analysis to assess the deviation

of macroscopic uniformity. Such gradients may be the effect of strong microscopic non-homogeneity in the

form of highly localized stresses and strains or damage. The RVE-based microscopic analysis, on the other

hand, provides effective criteria to estimate departure from periodicity conditions, especially in the event of

evolving microstructural damage. The adaptation criteria for level transitions are discussed in section 6.4.

Two sets of finite element problems are solved for the level-1 subdomain in sequence, viz.,

1. Macroscopic analysis: Incremental macroscopic analysis of the computational domain is performed using

the CDM model to evaluate macroscopic variables e.g. stresses and strains due to the increments in

applied loads.

2. Microstructural RVE analysis: This is a post-processing operation in which microstructural analysis

of the RVE is conducted for each integration point of the macroscopic elements. The strain field eij,

obtained from macroscopic analysis with the CDM model, is imposed on the RVE as an external driver,

together with periodic boundary conditions on the boundary of the RVE as shown in figure (6.1)a.

Microscopic stresses rij, strains Eij and other variables are computed in this post-processing stage for

each RVE.

Remark 1: The macroscopic computations of level-O and level-1 elements are performed with the conventional

displacement-based finite element method, while all microscopic calculations in the RVE of level-i elements
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are performed using the Voronoi cell FEM [88, 37, 58].

Remark 2: Computational models in the macroscopic level-O and level-1 subdomains are refined adaptively by

selective h- or h-p strategies. 'Error' and convergence criteria for this refinement have been discussed in [83].

Local enrichment through successive mesh refinement or enhancement, serves a dual purpose in the multi-

level computational strategy. The first goal is to identify regions of high discretization 'error' and improve

convergence through mesh enhancement. The second is to identify regions of high modeling error and zoom

in on these regions to create higher resolution. These regions are generally characterized by large gradients

and localization of macroscopic variables. Element refinement in these regions is helpful for reducing the

length-scale difference between macroscopic elements in the homogenized domain and microscopic regions

with explicit representation of heterogeneities.

6.2.3 Computational Subdomain Level-2 (Q 12 )

The level-2 subdomain of pure microscopic analysis emerges from level-1 elements in regions characterized

by (a) departure from macroscopic uniformity, e.g. regions of localization or fracture, and (b) significant

microstructural non-uniformities manifested by e.g. growth of localized damage. Prior to transition to level-

2 elements, a high spatial resolution is reached in the macroscopic mesh, resulting in small elements, by

h- or hp- refinement. The successive refinement process stops when a certain element size is achieved and

subsequently the model changes from macroscopic to pure microscopic. A scale ratio SR is chosen a-priori

to ascertain this element size. Depending on the choice of SR = Size of lel-2 leme, the microscopicSize of local RVE ' mirsoc

model in any given level-2 element can encompass large portions of the microstructure with many discrete

heterogeneities. The level-2 elements are constructed by filling with the exact microstructure at that location,

as outlined in the following steps and shown in figure 6.2.

"* Use appropriate adaptation criteria to determine if a level-I element needs to switch to level-2 element.

"* Identify a region in the microstructure f,,icro that is located in the same region as the level-2 element.

Qmico should extend beyond the element boundary by approximately two fiber lengths.

"• Tessellate the local microstructure to generate a mesh of Voronoi cell elements as shown in figure (6.3).

145



* Carve out the microstructural region of the level-2 element from the local microstructure fmico. This

procedure will result in dissecting some of the fibers on the boundary. When this happens, additional

nodes are generated on the Voronoi cell boundary at locations where the fiber surface and Voronoi

cell edges intersect the boundary of the level-2 element. The dissected conjugate pieces of a fiber

belonging to two contiguous level-2 elements are joined together when the two contiguous elements

share a common edge.

*• ElI Level-0/1 Element Li Transition element

* Level-2 element 0-0 Special interface layer

* Level-01 nodes
0 0 Level-0/1 nodes at the transition interface

000 0 0.0 . t? micro m VCFEM nodes on level-2/transition boundary

X VCFEM internal nodes

Y Transition element nodes at the interface

(a) (b)

Figure 6.2: (a) Process of carving out level-2 element microstructure (b) Interface constraints between level-
O/level-1 and tr elements

Requirement of high-resolution micromechanical models in these elements entails prohibitively large com-

putations using conventional finite element methods. The microstructure-based Voronoi cell FEM [37, 58, 88]

is particularly effective for modeling level-2 elements because of its efficiency in modeling large heterogeneous

regions [37, 58, 88, 89, 83]. Each Voronoi cell with embedded heterogeneities (particle, fiber, void, crack etc.)
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represents the region of contiguity for the heterogeneity, and is treated as an element in VCFEM. VCFEM

elements can be considerably larger than conventional FEM elements and incorporate a special hybrid FEM

formulation. Incorporation of known functional forms from analytical micromechanics substantially enhances

its convergence. A schematic diagram of Voronoi cell elements is shown in figure (6.3). A high level of ac-

curacy has been achieved with VCFEM for modeling problems with microstructural damage by particle

cracking [38] and fiber-matrix interfacial debonding [37, 58]. For debonding simulation, imperfect interfaces

are represented by the cohesive zone model [76]. Displacement degrees of freedom on the fiber-matrix in-

terface are constrained by the cohesive zone models as discussed in section 6.3. VCFEM has been shown

to be significantly more efficient than commercial displacement based FE packages for modeling complex

microstructures with evolving damage.

Q a

U Q

Figure 6.3: A typical level-2 element containing an aggregate of microstructural Voronoi cell elements with
relevant notations.

147



6.2.4 Scale Transition Subdomain (Qtr)

The interface between the level-O or level-1 elements and the level-2 elements with explicit representation

of the heterogeneous microscopic domain, needs a special treatment to facilitate smooth transition of scales

across the element boundaries. A layer of transition elements (Etr e Qt,) is sandwiched between these

elements, where (Qltr) is the transition subdomain as shown in figure (6.2)b. The Etr elements are essentially

level-2 elements with compatibility and traction continuity constraints imposed at the interface with level-

C/level-1 elements. It is assumed that layers of Etr elements are located beyond the critical hot-spots,

at which homogenization fails. Hence, the homogenized laws are sufficient at their interfaces with level-

1/level-C elements. A weak form of the interface displacement continuity is incorporated through the use of

Lagrange multipliers on this interface [83, 82]. This results in a weak satisfaction of the interface displacement

compatibility and avoids the occurrence of spurious forces that arise if the displacements are strongly coupled.

6.3 Coupling Different Levels in the Concurrent Multi-Scale Al-

gorithm

The concurrent multi-scale analysis requires that all levels be coupled for simultaneously solving for variables

in the different computational subdomains. Consequently, the global stiffness matrix and load vectors are

derived for the entire computational domain (Qhet = {010 U Q11 U Q12 U Qtr}). The corresponding domain

boundary is delineated as Fhct = {Flo U F1i U F12} where P10 = a0jo n Fhet; I'll O= l n Fhet; F12 -

-9R2 ln [het. Let Pint =- fQll n atr delineate the boundary between the level-1 and transition elements,

where the displacement continuity is satisfied using Lagrange multipliers. The incremental form of the

equation of principle of virtual work equation for Qhet at the end of an increment, can be written as the sum
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of contributions from each individual domain, as

(Eij -+ a~ij)-_ d - (ti + Ati)u50 dF

+ (s, + •,;)-•:- da J (t, +At•)6u• 1 dlr

+fj(Eij + Aij)- -. dQ - (t' + Ati)5u" dl?
aýUtr+ (oi, + Aoj ý , d -d

+f (,tj +l Ao~ij ll)(y ALt -f (i +Ol Atiyu,~ d

+ ,(Ai + AA' )( + Avi - ui Au- )dip

+Jf(Ar ±AAr)(V ± AV, _ Aur)dr = 0 (6.7)

The prefix A symbolizes increments of the respective variables in the incremental solution process. The

superscripts 10, 11, 12, tr correspond to association with the respective level, while the (/) sign refers to

variables that could belong to either level. Eij are the components homogenized macroscopic stresses ob-

tained from the CDM constitutive model for Q1o and Q1. The applied tractions ti are at traction boundaries

of the respective domains. The boxed parts in equation (6.7) correspond to contributions from level-2 and

transition computational subdomains that are generated from VCFEM solutions of the microstructural re-

gions. Displacement components u:°, u 11, u:r and uý2 are on the boundaries of elements coinciding with the

boundaries of the Q10, !ii, Qtr and Q 2 subdomains. An intermediate segment Pint is added at the interface

between the level-i and tr elements, as shown in figure 6.2. On these segments, displacement components vi

are interpolated with any order polynomial functions, independent of the interpolations on afm/" or a•tr.

Even for highly nonhomogeneous displacements, high order interpolations on the intermediate segment are

able to smoothen the transition between levels. This has been demonstrated for problems without damage

through numerical examples in [83]. The last two terms in equation (6.7) use Lagrange multipliers to fa-

cilitate incorporation of a weak form of the interfacial displacement continuity on r'in,. A10/'l and Atr are

vector columns of Lagrange multipliers belonging to domains Q10/1 and Pt, respectively at 'i,,t. The Euler's

equations, obtained from setting the coefficients of 6vi, A5Li° and .A:• to zero respectively in the principle
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of virtual work (6.7), are

10/1 1 + AA O/11 - -j

=(or + A=j)lon. - +(A + AAý) = -(oi• + Aoij)r

(ui + Aui)'O/Ll (U1 + AUi)tr = (Vi + Avi) (6.8)

where ni is the unit normal vector and Ai and A!' correspond to the interfacial traction components on
i9to/11 and ag2tr respectively. The displacements vi and the Lagrange multipliers A10/11 and A- 2 /tr on the

intermediate boundary segment are interpolated from nodal values using suitably assumed shape functions

as:

{v} = [Li~tJ{qint} , {At°/"I = [Lw/o/,]{Ato/tL} , {Atr} = [L't\Ir{Atr} (6.9)

The displacements ut 0 and ut' in each level-O and level-1 elements are interpolated by the standard or

hierarchical Legendre polynomials based shape functions as:

{u}0 = [N 0 l]{qi0} = [N[o NO] qo

SqO
101

(6.10)
{u}/1 [Nli]{qji} = [NA1 NO] q/1

As shown in figure 6.2, the generalized displacements in the level-O and level-1 elements are subdivided into

two classes: (i) those at nodal points, which interface with transition elements, and (ii) those at all other

nodes. Generally, only level-1 elements will interface with transition elements because of the sequence of

introduction of computational levels. The generalized displacements q1 o/t1 corresponds to the nodal degrees

of freedom in level-0/level-1 elements at the interface with transition elements, while q0/tlo

the remaining degrees of freedom in these elements. The solution of the algebraic form of equation (6.7) is

obtained using the Newton Raphson iterative solver. Setting up the tangent stiffness matrix requires consis-

tent linearization by taking directional derivative of equation (6.7) along incremental displacement vectors
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Au and Av, and the Lagrange multipliers AA. For the i-th iteration in the solution of the incremental

variables, assembled matrix equations derived from equation (6.7) has the following structure.

"K o'l K"o/0  0 0 0 P10 /1 1  0 Aqo AF'

K10 /1 K1 ' 0 0 0 0 0 Aq AFo

o 0 KgI K't'0  0 0 Ptr AqIr AFar

K0 " K0 ,'0  0 0 0 o (6.11)
12/tr 12/tr )2/tr

0 0 0 0 0 Q0o/l Qtr Aqi,ýt AFit
PT QT

pT 0 0 0 1T 0 0 AAt0 111

o 0 tr 0 0 AAtr AF.i 2 /tr

As explained before, the superscript I represents quantities associated with nodal points at the interface with

transition elements while superscript 0 indicate association with nodes at other regions. The two notations

in the superscript separated by comma, represents the node coupling effect. For example, the superscript

I, 0 corresponds to the coupling between the non-interface and interface nodes. The stiffness submatrices

[K10/11] and sub-vector {FF0 /,1 } correspond to those for the level-C and level-I elements and are expressed as

(Klo/ll)j-), = J 9u•,,,Xk &ek! d

(AFio/1 )n= j (tin + Atm)NadF + j (Ai + AAi)NadF (6.12)

±rjj+AEmn) adQ
J-i'QOUQI, ~

The subscripts (in, n) correspond to the degrees of freedom while (a,,/3) correspond to the node numbers in

the element. These matrices and vectors are further divided based on the classification of the I and 0 nodes.

The coupling between the level-C/level- I and tr elements is achieved through the fP] and [Q] matrices, which
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may be expressed as

(PLO/11)manoN - NT(L,\o/,,L)npdP
fint

= --Mn, NmT ,(L,%2/t,)nedr
-'int M (6.13)

(Qi1 zi )man,3= (L~Tma(b/i) 3d

=imcni j (LTt)m•(L,,o,)n,3dP
fint 

i

Contributions to the load vector {F} due to coupling between level-O/level-1 and tr elements are given as

(AFt)m= =- (LT •)a (\LO/ll + AAO/"l)mdP - inT ( ,[)(Al2/tr +±AAt2/tr)mdr
,11int i ri. n

(AFAIO/ji)ma = - (L o/li)a{Vm + Avm - (ulo/i)m - A (Uio/I)m}dr (6.14)

(AFA12/tr)m, = - jnt (L•tr)a{Vm +AV, - (U12/t,). - A(U12/tr)-}dr

Finally, the stiffness [K12/tr] and the load vector {FI2/tr} for level-2 and tr elements are obtained by VCFEM

calculations followed by static condensation to represent the virtual work in terms of the boundary terms

only.

6.3.1 Modified Voronoi Cell FEM Formulation for a RVE in Level-1 Elements

Details of the Voronoi Cell FEM are provided in [88, 37, 58] and have been summarized in the appendix section

6.7.2. As discussed in section 6.2.2, the post-processing phase for level-1 elements require the evaluation of

different variables in the RVE from known values of macroscopic strains. A small variant of the formulation in

equation (6.40) enables this execution. The energy functional for a RVE (Y) with Y-periodic displacements

and Y-anti-periodic tractions on the boundary, and imposed macroscopic strain (eij +-Aeij), may be written
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as

H~VE= J jSkLUAT d3 k1 - Sijkla'Aou dY (6.15)

- f 1 SlcklAOai2Ao,'I dY - C~u' Aor dY
k~ j ijklakil i2

+fj (u, + Au)n,(u'±Au')daY - j (oT + AoT)nj(u' + Au~n)daY

f U- + A U U n-AU

± o +± a-)cu + Auc)daY - Tmd(u' - u')do9Y

- ,Ii'~Iu~-u~T'd~u' - u')daY

Ij(eij + Aeij)Aor'dY + J(eij + Aejj)Aaý dY (6.16)

The boxed term corresponds to the additional energy due to the imposed macroscopic strain field on the

RVE region Y. The Euler-Lagrange equations corresponding to this energy functional are:

ecj (x, Y) + AEj (XI y) = Sijk (Ouij + Acr,) =(eij (x) + Aeij (x))

+I[ a(Ui (Y) + Aui (y)) + a(U 2 (y) +±Au,(y)) ] V yE Ym,

2 t9yj (

(6.17)

ui is Y-periodic and o' is Y-anti-periodic on aYe (6.18)

The corresponding weak form of the element kinematic relation is written in a matrix equation form as

[fopm]T[Sm][Pm]dQ [0] 1 r+ In

101 ~fQ~pcJT[SC j[P r]dQ O' + LC ± A/+3Cq

0,f [pm]T[Ijej [LcjdaQ -f 0 [pn]T (nc][LcjdaQ [0]

IM Aq M

[ 0] [0] fan [pcIT [nc][LcjdaQ q +Aq

[ r] e+Ae~dQ (619
-{f[pcTh"{e +Ae~dQ 5(.9
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or in a condensed form

[He]{13 + A}} = [Ge]{q + Aq} - {R'} (6.20)

This relation is then substituted in equation (6.44) for obtaining the RVE based solutions. It should be

noted that displacement periodicity is imposed on the RVE boundary for solving this problem.

6.4 Criteria for Adaptive Mesh Refinement and Level Transitions

In the application of the multi-level model, the following criteria are used for mesh-refinement and level

transitions due to discretization and modeling error respectively. Many of these adaptation criteria are

based on the physics of the problem in consideration, since rigorous mathematical error bounds are scarce

(or even non-existent) for these nonlinear problems. Consequently they are nonunique and other indicators

may be used if appropriate.

6.4.1 Refinement of Level-O and Level-1 Meshes by h-Adaptation

The computational models in level-O and level-i subdomains are enriched by h-adaptation based mesh re-

finement to reduce discretization 'error'. The h-adaptation procedure subdivides candidate macroscopic

elements into smaller elements to reduce a suitably chosen error. It is necessary to impose boundary dis-

placement compatibility constraint conditions between contiguous divided and undivided elements in this

method [90]. This local mesh enrichment is intended to reduce discretization error and to identify regions

of modeling error by zooming in on localization regions with evolving gradients. For CDM based evolving

problems, an adaptation criterion is formulated in this paper in terms of the jump in traction across adjacent
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element boundaries that signifies local stress gradients. The condition is stated as:

Refine element 'e', if the traction jump error across the element

satisfies the condition: EtJ > C1 * EtJ,

e - avg'

where

tj{ 9  - ( I (Ee]) )1/2 and (EtJ) 2  
_ fo0  ([[Tx]] 2 + [[T l]]2 ) dof (6 )

avg " NE fan daQ

Here NE is the total number of level-O and level-I elements in the entire computational domain, Tx, T. are

the components of element boundary tractions in the x and y directions and [[.] is the jump operator across

element boundary 0
e. A factor C1 (< 1) has been chosen from numerical experiments.

6.4.2 Criteria for Switching from Level-O to Level-1 Elements

Level-O to level-1 element transition takes place according to criteria signaling departure from conditions of

the homogenizability that are based on macroscopic variables in the continuum model of level-O elements.

The degrading dissipation energy Wd in the CDM model is a strong indicator of localized damage evolution.

Consequently, a criterion is formulated as:

Switch element 'e' from level-O to level-1 if:

Ege * (Wd)e > C2 * E gde* (Wd)max: (6.22)

where Egde is the norm of the local gradient of the degrading dissipation energy (Wd),, expressed as:

E9de + (Wd))2 (6.23)

Egd is the maximum value of Egd, for all elements and C2 (< 1) is a prescribed factor. The criterion (6.22)

is helpful for seeking out regions with high gradients of Wd in regions of high Wd itself. In a previous paper

by the authors [83], the gradient Egad was expressed in terms of the maximum difference in the damage for
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neighboring elements as E'de = Maxl(Wd)e - (Wd)adjacent.- A more accurate definition of the local gradient

is adopted in the present work, using the Zienkiewicz-Zhu (ZZ) gradient patch recovery method [119]. In

this method, interpolation of Wd is assumed in the form of a polynomial over a patch of elements adjoining

a nodal point in a level-O element. The least square minimization process leads to the local matrix equation

nie ne

E[1ýe(X1, X2)] ,(X1, X2)]{a} = T-•[&e(Xl,X 2)IT (Wd)e(Xl,X 2) (6.24)
e=1 e=1

where [&,e(x1, x2)] is a matrix containing polynomial interpolation terms and ne is the number of elements

in the patch. The equation (6.24) is solved for the coefficients {a}. The gradients of Wd in each element are

calculated from the nodal values using element shape functions as

Wd = (Wd)_, aWd= 4 d)_ (6.25

S 2  1 (6.25)

6.4.3 Criteria for Switching from Level-1 to Level-2 Elements

For elements in which macroscopic nonuniformity has been established according to equation (6.22), de-

parture from RVE periodicity is taken as an indicator for activating a switch from level-1 to level-2. The

switching criterion is developed in terms of evolving variables, e.g. the averaged strain at the fiber-matrix

interface in the local microstructural RVE. The averaged strain is stated as:

= f c dl Juaný cd• =2 1 JL .([uinj + [uj]ni)d8a (6.26)

where the integral is evaluated over all the fiber-matrix interfaces in the RVE. The jump in displacement

across the fiber-matrix interface with a normal ni is denoted by [ui]. For perfect interfaces [ui] will be zero.

Thus, Dij corresponds to the contributions to macroscopic strain due to damage only, and Dij = 0 in the

absence of damage. Departure from periodicity will result in a significantly different averaged strain Dij

in response to different conditions on the boundary of the microstructural region. For example, let D.!12

correspond to the solution of a boundary value problem of the local microstructure included in a level-2
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element (see figure 6.2) subject to boundary displacements that have been obtained from the macroscopic

level-O/I analysis. The scale of the microstructure is relevant in this analysis since periodicity is not imposed

on the boundary. On the other hand, let D" RVE be from the solution of a boundary value problem of the

local RVE with imposed macroscopic strains and subjected to periodic boundary displacements constraints.

The difference in these two strains for a level-1 element e may be quantified as

dper =max e,12 _DeIRVEI, re,12 DeRVE1, 1 V

max(ID -- D ID 2 
- De2 , D - D e ) (6.27)

For evaluating De 12 in a given step of the incremental solution, only the increments in the present step

are calculated by the level-i macroscopic displacement boundary conditions. It is assumed that the RVE-

based solution is valid all the way upto (but excluding) the present step. The departure from periodicity is

measured in terms of the difference in averaged strains E"dp", and hence the criterion,

Switch element 'e' from level-1 to level-2 if:

E dper > C DnRVE (6.28)e •3 mrax

where D[VE is the maximum value of JDejRVEI for all the level-1 elements in the computational domain.

Remark: Once the regions of level-2 and transition elements have been identified, it is important to update

the local micromechanical states of stress, strain and damage to the current state. This step should precede

the coupled concurrent analysis. For this analysis, the history of the macroscopic displacement solution on

the level-O/level-1 element boundary prior to the switch is utilized. The local micromechanical (VCFEM)

boundary value problem for the level-2 element is incrementally solved from the beginning to obtain the

history of stresses, strains and damage in the microstructure from the macroscopic boundary displacement

history.
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6.5 Numerical Examples with the Adaptive Multilevel Model

Two sets of numerical examples are solved to study the effectiveness of the multi-level computational model

for composite materials.

6.5.1 Multi-level Model vs. Micromechanical Analysis

This example is aimed at understanding the effectiveness of the multi-level model in analyzing a nonuniform

composite microstructure by comparing its predictions with those by pure micromechanical analysis. It is

computationally intensive to conduct pure micromechanical analysis with evolving damage for very large mi-

crostructural regions. Consequently a computational domain with a small population of fibers, as shown in

the optical micrograph of figure 6.4(a), is considered. The micrograph is for a polymer matrix composite with

a random dispersion of uniaxial fibers. The dimensions of the micrograph analyzed are 100m x 70.09jum,

containing 264 circular fibers of diameter 1.645,um each, corresponding to a volume fraction of 32%. Though

the domain may not be adequate for a clear separation between continuum and micromechanical regions

(since relatively large regions are needed to materialize the RVE), the results of this example are enough to

show the effectiveness of the overall framework.

The optical micrograph is mapped onto a simulated microstructure with circular fibers that is tessellated

into a mesh of 264 Voronoi cell elements, as shown in figure 6.4(b). The constituent materials in the composite

system are an epoxy resin matrix, stainless steel reinforcing fibers and a very thin film of freekote (< O.lim)

at the fiber-matrix interface. The freekote imparts a weak strength to the steel-epoxy interface, which allows

a stable growth of the debond crack for experimental observation. The experimental methods of material and

interface characterization have been discussed in [37]. Both the matrix and fiber materials are characterized

by isotropic elasticity properties. The matrix material has a Young's modulus, Epoaay = 4.6 GPa and

Poisson's ratio, vepoxy = 0.4, while the fiber material has a Young's modulus, Et,,d - 210 GPa and

Poisson's ratio, vt,,, = 0.3. A bilinear cohesive law described in [58, 76] is used in this analysis for modeling
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Figure 6.4: (a) Optical micrograph of a steel fiber-epoxy matrix composite with 264 fibers (b) the simulated
computational model with a Voronoi cell mesh

the fiber-matrix interface. In this model, the normal and tangential tractions are given as

tn if 3•3 6

aq6 _ a•6,• t~n if Sc <3•3e

0 if 6>3e

S[t, 23t if 3 < 3c

Tt= 6t- 6 6t- t6t if 3c <3•<6 3629

0 if 3>3e

where t is a bilinear function of the interfacial separation as

t = (6.30)

The unloading behavior in the hardening region is linear following the loading path. In the softening region,
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the unloading proceeds along a different linear path from the current position to the origin with a reduced

stiffness, for which the t - 3 relation is

t = Umax Jmax - 3e 6 J < Jma, < Je and J < Jma, (6.31)5 max 6
c - J,

It is expected that the degrading dissipation energy Wd in the macroscopic CDM model depends on the

cohesive parameters in the microstructural debonding model. A square RVE with a single circular fiber is

simulated for interfacial debonding with three different sets of cohesive parameters, as shown in the inset

of figure 6.5. The cohesive energies are the same for all cases. However in one case, the critical separation

length 6, is increased while in the other, the corresponding peak stress amaz is reduced. The figure 6.5 infers

that while 6, has a small influence on Wd, the effect of 'max is certainly significant, at least in the early

stages of straining.

The cohesive parameters used in this paper are: Umaz = 0.005 GPa, 5c = 5.1 x 10-5 m and 5, =

3.1 X 10-4 m. The microstructure is loaded in tension in the horizontal direction with a displacement of

0.lftm that is uniformly increased in 20 equal increments, corresponding to a total strain of c1, = 0.1%. The

displacement boundary condition is imposed along the right edge, as shown in figure 6.4(b).

Micromechanical analysis by VCFEM

The pure micromechanical VCFEM solution using the mesh of figure 6.4(b) has been presented in [58] and

are used here as reference solutions for the multi-scale simulation. Figure 6.6(a) shows the contour plot of

microscopic stress or,, at the final step of the micromechanical simulation with a depiction of interfacial

debonding. The right side of the microstructure shows significant concentrated damage with this load. The

debonding initiates at the top and percolates to the bottom of the microstructure along a narrow band.

Multi-Scale Analysis with the Multi-Level Model

Multi-scale analysis is performed by the concurrent multi-level computational model and the results are

compared with those from the micromechanical VCFEM analysis. For the multi-level model, the entire com-
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Figure 6.5: The degrading dissipation energy Wd as a function of strain, evaluated for different cohesive zone
parameters in the bilinear cohesive law

putational region of 264 fibers is first divided into 9 macroscopic finite elements as shown in figure 6.7(a). For

evaluating the homogenized constitutive properties for each of element, statistically equivalent representative

volume element or SERVE for the microstructure underlying each macroscopic element is first identified.

Various statistical methods have been used to determine the size scale of the RVE and the number of inclu-

sions contained in it [79, 39, 94, 1061. Rigorous methods of evaluating statistically equivalent representative

volume elements by a combination of statistical methods and micromechanical analyses have been conducted

by the first author in [91, 97]. However, since the number of fibers in the micrograph is limited in this ex-

ercise, a simpler assumption is made. The SERVE for each element is assumed to consist of all the fibers

belonging to that element. For example, to generate the SERVE for an element window in the micrograph

of figure 6.4(b), all fibers whose centers are located within this window are first identified as constituents

of the RVE. This is shown by the aggregate of black fibers in figure 6.8(a). The homogenization method,

discussed in sections 6.2.2 and 6.3, requires a periodic distribution of the RVE and this is achieved by locally
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repeating the arrangement of fibers in both the x, and x2 directions for a period length in figure 6.8(a). This

means that for each fiber identified in the element, at (X1, X2), four identical fibers are placed at the locations

(X1 + X 1, x 2), (x 1 ,7x2 ± X 2 ) where (X 1, X 2) are periods in the two directions. The period lengths X 1, X 2 are

selected such that the volume fraction of RVE matches that of the local microstructure. Finally, the domain

is tessellated into a network of Voronoi cells as shown in figure 6.8(b) Tessellation provides a natural way

of creating periodic SERVE boundary. For non-uniform fiber arrangements, the SERVE boundary consists

of non-straight line edges. The nodes on this SERVE boundary are periodic, i.e. for every boundary node

a periodic pair can be identified on the boundary at a distance of one period along each of the coordinate

directions. In figure 6.8(b), the node pairs are identified as AA, BB etc. The number of fibers and their

distribution in the SERVE of each macroscopic element is shown in figure 6.7(a).

Since the number of elements in this exercise is very small (only 9), level-O simulations with the CDM

model is bypassed in the multi-level analysis. All elements are level-1 at the start of the multi-level simulation.

Switch to level-2 elements is made in accordance with equations (6.27) and (6.28) with C2 = 0.2. However

the D!• - D.DRyE terms for each element in equation (6.27) are replaced by the difference in RVE based

averaged strains between adjacent elements DeIRVE - De2'RVE. Also, as opposed to an entire macroscopic

element, a single layer of transition Voronoi cell elements is included between the level-I and level-2 elements.

In figure 6.7(b) the Voronoi elements containing the grey fibers constitute the transition layer, while those

containing the black fibers belong to level-2. An interface segment Pi,t is inserted between the transition and

level-1 elements at a distance Ltr/L2 from the right edge. Convergence properties of the multi-level model

are studied by considering two cases with L._ = 0.35 and , = 0.45. This is achieved by changing the

size of the initial level-1 elements.

As depicted in figure 6.7(b), only three elements (3, 6 and 9) at the right side of the initial mesh switch

from level-1 to level-2. A comparison of results by (a) VCFEM based micromechanical analyses (all level-2

elements) , (b) homogenization based macroscopic analysis (all level-1 elements), and (c) concurrent multi-

level analysis (level-1 and level-2 elements) for L = 0.35 and 0.45 is made. Contour plots of ci1 (GPa)L

showing interfacial debonding at the end of the simulation are shown for the concurrent multi-scale analysis
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in figure 6.6(b,c). The discrepancy in the damage path predicted by the micromechanical analysis and the

multi-level analysis reduces sharply with increasing L value. This can be attributed to the fact, that

the damage path is very sensitive to the macro-micro interface conditions. Since the sample size is small

and there is no real periodicity in the microstructure, the proximity of the level-1 boundary to the damage

localization zone alters the local boundary conditions. However as this distance is increased, the microscopic

stress distribution, debonding pattern and damage zone replicates the real event observed in micromechanical

analysis. The distribution of the micromechanical stresses o,, generated by pure micromechanical and multi-

level analyses, are plotted along a line through the middle of micrograph in figure 6.9. The micromechanical

stresses show only minor oscillations about an averaged value of the 0.005 GPa in the region to the left

of the level-l-level-2 interface. In the region to the right, where damage is predominant, there is clearly a

convergence of the stresses with increasing L,,. 1 value.

The macroscopic or averaged stress-strain response for element 1 (always level-i) and element 9 (changes

levels) are plotted in figures 6.10. For the micromechanical problems with debonding, the volume averaged

stresses and strains are evaluated by averaging the local fields over the microscopic domain as:

Y'ij - orij (XIX2)dQ and eij C=- ijj(x1,x 2)dQ - Dij (6.32)

where Dij is the strain jump defined in equation (6.26). The results for all the models are in good agreement

for the element 1, where there is no significant microstructural damage. The small difference is due to the

periodicity constraints imposed on the microstructure. Also there is a difference between the results of case

1: i = 0.35 and case 2: . = 0.45, due to the interface conditions at i,at. However, as is expected
L L

the results are quite different for element 9, where significant damage is observed in figure 6.6. The level-1

analysis shows significant deviation from the micromechanical analysis due to imposed periodicity in the

damage zone. Once again, the results improve significantly with increasing ýý ratio.
L
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6.5.2 A Composite Double Lap Joint with Microstructural Debonding

Adhesive bonded joints are considered as preferred alternatives to fasteners for joining structural components

due to their light weight. However, adhesively bonded structures consisting of different materials, can induce

high stresses near the interface leading to failure initiation by interfacial debonding. A double-lap bonded

joint with boron-epoxy composites as adherents, is analyzed in this example. An adhesive shown as ABCD

in figure 6.11(a) is used to bond the two composite materials. Only a quarter of the joint is modeled from

considerations of symmetry in boundary and loading conditions. For boundary conditions, the displacement

component ul is set to zero along the face x2 = 0 implying symmetry about the x, axis. The displacement

components ul and u2 along the face x, = 8h are set to zero corresponding to a fixed edge. A tensile

displacement ul is applied on the face of the lower ply at x, = 0. Both plies above and below the adhesive

are made of unidirectional boron fiber- epoxy matrix composite materials. The fibers are uniformly arranged

in a square array in the microstructure, implying a square unit cell with a single circular fiber. The epoxy

matrix has a Youngs modulus E = 4.6 GPa and Poisson's ratio , = 0.4, while boron fibers have a Youngs

modulus E = 210 GPa and Poisson's ratio v = 0.3. The material properties of the isotropic adhesive are:

Young's modulus E = 3.45 GPa and Poisson's ratio v = 0.34. The bilinear cohesive law parameters for the

matrix-fiber interface are: Umax= 0.02 GPa, Jc = 5.0 x 10' m and J, = 20.0 x 10-4 m.

Multi-level analysis for model with 450 fibers

In this model, the top ply above the adhesive consists of 10 rows of fiber, while the bottom row consists of

5 rows resulting in a total of 450 fibers. The microstructural volume fraction of fibers is V1 = 20%. The

applied displacement on the face at x, = 0, is uniformly increased from zero to ul = 1.2 x 10-3h in 15

uniform increments. The number of fibers is kept low in this example, such that a micromechanical analysis

can be easily done for this example with a mesh of 450 Voronoi elements, each of which is a square unit cell.

The micromechanics solutions are used as a reference to determine the accuracy of multi-scale simulations.

Three different approaches are used to solve this problem. They are: (a) a macroscopic model using the

continuum damage model for constitutive behavior, (b) a detailed micromechanical VCFEM analysis, and

(c) a multi-level model for multi-scale analysis. The starting mesh in the multi-level model of the bonded
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joint consists of a uniform grid of 470 QUAD4 elements for macroscopic analysis as shown in figure 6.11. The

constitutive relation for each element is a fourth order anisotropic CDM model that has been developed for

this unit cell with interfacial cohesive zone in [84]. Figure 6.12(a) shows the contour of degrading dissipation

energy Vd, at the final stage of loading by a pure CDM based macroscopic analysis. Damage initiates near

the bottom left corner A of the adhesive joint and propagates downwards to span the entire region on the

left of point A. Level-O -* level-1 transition in the multi-level analysis is performed using equation (6.22) and

level-1 -+ level-2 transition uses equation (6.28) with factors C 2 = 0.5 and C 3 = 0.1. The gradient of the

energy (1Wd)2 + (•Wd)2 at the final loading stage, used in equation (6.22), is shown in figure 6.12(b). The

corresponding evolution of various levels in the multi-scale model is depicted in figure 6.13 at two different

loading stages. There are 7 level-1 elements at 87% of the final loading. At the final load increment, the

multi-level mesh consists of 446 level-O elements, 0 level-1 elements, 14 level-2 elements and 10 transition

elements. All level-2 elements emerge in critical the regions where both the gradient and intensity of Wd

are high in the macroscopic analysis. Figure 6.14(a,b) depict the contours of microscopic stress all and the

regions of debonding obtained by pure micromechanical and the multi-level models. The results of the multi-

level model are in excellent agreement with the micromechanical analysis, both with respect to debonding

regions and evolving variables. The maximum error in anl is around 1%. The excellent agreement is further

corroborated in the plot of al I along the vertical line through the microstructure in figure ??. Figure ??(a,b)

plot the macroscopic (averaged) Ell - ell curve obtained from (a) macroscopic CDM-based analysis, (b)

micromechanical analysis and (c) multi-scale analysis with the multi-level model at two different locations,

P1 and P2 shown in figure 6.11(b). At P2, where the damage and its gradient are low, solutions by the CDM

model and micromechanics are in relatively good agreement. At this point, the multi-scale model uses the

CDM constitutive law. However, the CDM results are quite different from the other two at P1, a hotspot

where the damage and its gradient are high. It is assuring to note that the multi-level model matches the

micromechanics results quite well at this point.

The computational efficiency of the multi-level model is examined by a comparison of the CPU time

on a IA32 computer cluster for the different models. The computations are carried out in a serial manner
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using a single processor. The results are tabulated in table 6.1. Although the macroscopic CDM analysis is

faster, it can lead to significant errors. The complete level-1 solution is even slower than the micromechanics

solution, since it solves the RVE problem in every element. Accurate analysis with the multi-level model is at

least 7 times faster than the complete micromechanics and level-1 solutions for this problem. The efficiency

increases rapidly with increasing number of fibers in the analysis.

Model ILevel- Level-i Micromechanics (Level-2) I Multi-scale
Time in seconds 71 300330 300310 42260

Table 6.1: CPU time on a IA32 cluster to solve the double lap joint model by various methods.

Multi-level analysis for model with 192000 fibers

This is a more realistic model of the composite joint with a large number of fibers, to realize the potential

of the multi-level model. The top ply consists of 160 rows of fiber, while the bottom row consists of 80 rows

resulting in a total of 192000 fibers. The geometric and material parameters are the same as in the previous

example, except for the special cases mentioned. A pure micromechanical analysis is not conducted due

to the large number of fibers. The problem is analyzed by (a) a macroscopic model by CDM and (b) the

multi-level model. The multi-level analysis activates all three types of adaptation:

o Refinement of level-O elements by h-adaptation in accordance with equation (6.21), for C1 = 0.7.

* Transition from level-O to level-1 elements in accordance with equation (6.22), with C 2 = 0.5.

* Transition from level-1 to level-2 elements in accordance with equation (6.28), with C3 = 0.1.

The effects of variation of cohesive zone parameters and the effect of volume fraction are studied. The unit

cells considered in this example have 2 volume fractions: (i) V1 = 20%. and (ii) V1 = 40%. Three different

cases with different parameters in the bilinear cohesive law are considered.

"* Ci: Same cohesive parameters as in section 6.5.2.

"*C2: ama, and Je are the same as in section 6.5.2. However, 5, is 4 times that in case C1. This reflects

the same cohesive energy with a smaller ascending slope.
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* C3: a,,,, is reduced by half and Je is doubled. Hence the cohesive energy is the same as C1 with a

smaller peak stress. Also J, is the same as that in C1.

The starting mesh has 470 level-O elements. For V1 = 40% and case C1, the final mesh has 1688 level-O

elements, 24 level-2 elements and 33 transition elements as shown in figure 6.15(a). Figure 6.15(b) illustrates

the corresponding microscopic stress distribution and debonding in the level-2 regions near the hotspot at

A. The macroscopic (averaged) stress-strain plots are shown for two points in the composite joint: (a) near

the critical point A and (b) at a non critical point B are shown in figure 6.16. The predictions of the CDM

model agree with the multi-level model at the point B. However, the stress predictions by the CDM model

are considerably higher than those by the multi-level model at A, where damage is very localized and the

periodicity condition imposed by the CDM model is unrealistic.

The effect of V1 on the damage evolution near the corner P1 is seen in figure 6.17 for the case C1.

A significantly higher Wd is observed for the higher volume fraction, which increases with evolving strain.

Figure 6.18 shows the distribution of Wd at the end of the analysis for the different cohesive parameters.

Intense damage localization takes place near the junction A in the bond (see figure 6.11(b). Damage starts

from this location and propagates down and left towards the edge of the applied loading. Damage localization

is the strongest for the case C1, and propagates almost vertically down in a narrow zone. It is in these regions,

that scale transition to level-2 occurs. The damage distribution in the remaining parts of the composite joint

is rather low and uniform. Moving the peak stress in case C2 with a lower traction-displacement slope results

in a more diffused damage region and the damage seem to spread more in the region to the left of point

A. The damage localization reduces for the case C3 with lower peak stress and the damage is more evenly

distributed. For V1 = 20%, the damaged regions are less localized.

6.6 Conclusions

An adaptive concurrent multi-level computational model is developed in this paper for multi-scale analysis

and prediction of damage in fiber reinforced composite materials. Microstructural damage is manifested by
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fiber-matrix interfacial debonding in this paper. Microstructural damage mechanisms leading to complete

failure are more complex than the singular mode of damage considered in this paper. The authors are

currently working towards this goal, where interfacial debonds bifurcate into the matrix and eventually

coalesce to cause a continuous fracture path. A step forward in this direction can be seen in a recent paper

on the growth and coalescence of multiple cohesive cracks [59]. However, the intent of the present paper is to

create a framework for the multi-scale coupling so that more complex damage mechanisms may eventually

be incorporated. Hence interfacial debonding is deemed sufficient for this purpose.

The multi-level model invokes two-way coupling of scales, viz. a bottom-up coupling with homogenization

at lower scales to introduce reduced order continuum models and a top-down coupling at critical hotspots

to transcend scales for following the microstructural damage evolution. The bottom-up coupling results in a

continuum damage mechanics (CDM) model developed in a preceding paper [84]. Three levels of hierarchy,

with different resolutions, evolve in this model with adaptation. Adaptive capabilities enable effective domain

decomposition in the evolving problem with damage, keeping a balance between computational efficiency and

accuracy. Macroscopic analysis is done with the CDM model of [84] for high efficiency. Pure micromechanical

analysis is computationally exhaustive and the adaptive methodology optimally reduces this region to a

minimum. The Voronoi cell finite element model [37, 58] is effectively utilized for efficient micromechanical

analysis of extended microstructural regions. The numerical examples establish the accuracy and efficiency

aspects of the model, as well as demonstrate its capability in handling problems involving damage in large

composite domains. Overall this work lays an effective foundation for solving multi-scale problems involving

localization, damage and crack evolution that may be impossible to achieve using any single scale model.

6.7 APPENDIX

6.7.1 Microscopic and Macroscopic Equations in Computational Subdomain

Level-1 (Q11)

Any function f in the RVE is assumed to be Y-periodic, i.e. f(x, y) = f(x, y + kY) Vk = 1, 2,... Peri-

odicity conditions are used on the RVE boundary to decouple the set of equations at different levels as:

168



Microscopic equations

I aui (y) auj(y))
fij(xy) = eij(x) - 1u(-)yj + u5y)

= ekI(x)[6kij +eki j(x)• j (Kinematics)

yj + (x) emn(x) (Constitutive)

Oaij(xy) = 0 (Equilibrium) (6.33)
Oyj

Macroscopic equations

= N 1 JEijkIkn61n +e- 1jn) dyemnn = E[jmnemn(x) (Constitutive)

aDij(x) + fi = 0 (Equilibrium) (6.34)

Oxj

In the above equations ui is a Y-periodic displacement function and oij (x, y) is the stress field in the RVE

respectively, while Eij (x) and eij are the homogenized stress and strain tensors. Eijkl and EIjkl correspond

to microscopic and homogenized anisotropic elasticity tensor respectively. The details of the derivation of

equations (6.33) and (6.34)are discussed in [89, 83].

6.7.2 The Voronoi Cell Finite Element Model

A typical level-2/ transition element consisting of microstructural Voronoi cell elements is shown in figure

6.3. The following assumptions are made in the formulation of each VCFEM element.

* Stress fields aj in the matrix phase 0m and aj in the inclusion phase 0, of each Voronoi cell element

Q, are independent and equilibrated. The stress interpolations in each phase are expressed as

{to m} = [Pm ]{11m } in Qf, and {o c} = [pC]{0C} in Q, (6.35)

where the matrices [pm/C] are obtained from assumed stress functions like the Airy's stress function
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and {f3 m/c} are unknown coefficients to be solved.

"* Compatible displacement field uý are assumed on each Voronoi cell element boundary aQe and inter-

polated as:

{ue} = [LeJ{qe} (6.36)

"* Compatible displacement fields u! and uý are assumed on the matrix and inclusion sides of the matrix-

inclusion interface 9ffc respectively, and are interpolated as :

{u m } = [Lc]{qr} on aQ' and {u'} = [LCI{q'} on a•c (6.37)

In an incremental formulation, the potential energy functional for each element is expressed in terms of the

incremented stresses and displacements as:

Z .e()a ',oJ, /it A , u, 1t - ABm (o'ij,Aug)dQ

- ABr(aý., Ac{)dM+j j(c4T ±Au)(e ± A0)df2

± (urj + + Ac)dN - Tnd(un - u')daQ

f t Jt- Ttmd(u' - ut)daQ - (ti + Ati)(uf + Au')dP (6.38)
C utm-u' km

Here B = ijkl~rijOki is the complementary energy density and ABR 1Sj k1AurJjcrkL The

strain fields cm and Eij are in the matrix and inclusion phases respectively of each Voronoi element. t is the

prescribed traction on the boundary Ptm. The prefix A corresponds to increments and subscripts n and t

correspond to the normal and tangential directions at the matrix-inclusion interface. The two terms on the

matrix-inclusion interface 0!l m / t9c provide the work done by the interfacial tractions Tm = Tn tm + T mt'm

due to interfacial separation (ur - uC). Tm' and Ttm are the normal and tangential components that are
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described by cohesive laws in [37, 58]. Using divergence theorem, the potential energy can be written as:

1e = - I gSk!Ao'Aau dQ - Sjk'uAj dQ (6.39)

Is- k fojAo'd - sj SkI 0k'l AoJ dQ

S (aT + AN,-)n'(ui + Auf)daQ - j (or + Aor')ný(ui + Aum')daQ

ý f f+Au,-tl-AU?
+ f](c + Aacr)nc(uý + Auc)daQ - Td(u - u-)daf

- I.d u - uTddou

frm(ti + Ati)(ue + Aue)dr (6.40)

Here n' and nc are the outward normal on aQ, and a&, respectively. The integration over the incremental

displacements at the interface 9Q, is conducted by the backward Euler method. The total potential energy

functional for each level-2 or tr element containing N,, Voronoi cell elements as shown in figure 6.3 is

Nc

H1 2 /tr = ElHe (6.41)
e=1

Substituting stress interpolations (6.35) and displacement interpolations (6.36,6.37) in equation (6.40) and

setting variations with respect to the stress coefficients A,3m, A/,3 respectively to zero results in the weak

form of the element kinematic relation.

fl[pm]T[sn] [P-•]dQ! [0] ){ rn + Ao•m =

[0] f[Q [Pc]T[Sc][PcldQ { 3 + A)3c

qe + Aqe[f0 [pm]T [flC[LidaQ f- Z f[pn]T [ncj[LcldaQ 1jqn+Aq

q rn+Anq,

or in a condensed form

[He](/3 + AO} = [Ge]{q + Aq} (6.42)
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The weak forms of the global traction continuity conditions are subsequently solved by setting the variation

of the total energy function in equation (6.41) with respect to Aq, Aq m and Aqc to zero. This results in

the weak form of the traction reciprocity conditions as:

N,, ~fon [LeIT[ne]T[pmI&dQ [0] m + Af3 m

.-- f [Lc]T [ncIT [Pm]darQ +01 +
[01 far, [Lc]T[nc]T[Pc]dC+

- ,[L.7]T ({n}T,(u, + Aug, ut + Aut) + {tc}Ttn(un + Au,, ut + Aut)) doQ

e=1

- fa8 [L]T ({nc}Tm(un + Aun, ut + Aut) + {tC}Ttrn(u, + Aug, ut + Aut)) da J
(6.43)

or in a condensed form
Nc Nc

Z[Ge] T {E3 + Aj} = Z{Re} (6.44)
e=1 e=1

Substituting (6.42) in (6.44) yields:

N~c N_

E-[G ]T [He-'[GeI{q + Aq} = -{Re} (6.45)
e=1 e=1

In an iterative solution of equation (6.45), its linearized form for the i-th iteration is given as:

N_, N_ Nvc

T[Ge IT[He]-'[Ge])i{Aq}i = E{Rel' - J[Ge]T[He]-'[Ge]{q + Aq}? (6.46)
e=1 e=1 e=1

or in a condensed form

[K]{Aq}1 = {AF"J}i (6.47)

In order to incorporate this relation in the linearized form of the principle of virtual work of equation (6.11),

it should be noted that the displacement vector U12/t, on the boundary of level-2 and transition element is
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a subset of all the VCFEM displacement fields, i.e. uvc = ue U u m U u'. Consequently, the displacement

field u"V can be separated into two categories, viz. (i) u 1
2/tr on nodal points at the boundary of the level-2

or transition elements shown is figure 6.3, and (ii) ui't on all the internal nodes. The stiffness matrix and

the load vector of the ensemble of all Voronoi cell elements belonging to a level-2 or transition element can

therefore be partitioned as

K 1 2
/tr,12/tr K12/tr,int /q 12/tr AFl

2 /tr

=1(6.48)
Kint,12/tr Kintint Aqint AFint

Static condensation of the internal degrees of freedom yields

[[K 12/tr,12/tr] - [Kl12/tr-,int ] [K int~int] -I [K int,12/th jt {Aq 12/tr I'

= {AF 2/tr}i - [K
1
2/tr'int] [Kintint] -1 {AFint}i (6.49)

These stiffness matrices and load vectors are then used in global assembly process of equation (6.11).
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Figure 6.6: Contour plot of al showing interfacial debonding at the end of the simulation, for: (a) pure
micromechanical analysis, (b) analysis by multi-scale model with a smaller level-2 region (Li-j-l = 0.35), andSL

(c) analysis by multi-scale model with a larger level-2 region (-/ = 0.45).
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Figure 6.7: Computational mesh for the computational domain: (a) Macroscopic mesh with different RVE

in every element, (b) Multi-level model with the interface between macroscopic and microscopic VCFE
elements.
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Figure 6.8: (a) A periodic microstructure containing the tessellated RVE (fibers in black), (b) placement of
the leVE in the level-i element showing periodic nodes on the boundary.
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Figure 6.9: Comparison of microscopic stress al by different methods, plotted along a line through the
middle of microstructure
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Figure 6.10: Comparison of macroscopic (volume averaged) El I - e1I curves by different methods of analysis
at (a) macroscopic element 1, and (b) macroscopic element 9.
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Figure 6.11: (a) Schematic diagram of a composite double lap joint showing dimensions and boundary
conditions, (b) the level-O computational mesh.
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Figure 6.12: Contour plot of (a) degrading dissipation energy Wd and (b) its gradient &(8'w)2 + (aw2)2
at the final loading stage.
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Figure 6.13: Evolution of the multi-level computational model with level transition (a) at 87 %loading, and
(b) at the final loading stage.
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Figure 6.14: Level 2 microscopic VCFEN4 elements near the corner A showing microscopic stress distribution
(GPa) and interfacial debondling at the end of the analysis by: (a) pure micromechanical analysis (b) multi-
scale analysis.
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Figure 6.16: Macroscopic averaged stress-strain (r 11 - e 11) plot at two locations in the double lap joint: (a)
critical region A and (b) non-critical region B.
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Figure 6.17: Degrading dissipation energy evolution near the corner A of the double lap joint for VI = 20%
and Vf = 40%, and case G1.
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Figure 6.18: Distribution of Wd with Vf =40% and different cohesive parameters: (a) case C1, (b) case 02,
and (c) case C'3, at the end of loading.
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